LESSONS LEARNT FROM 1000 DESIGN REVIEWS: RAW TRUTHS AND BLATANT LIES

By Kelvin R Legge, Chief Engineer: Integrated Development, Department of Water and Sanitation, RSA. <u>LeggeK@dws.gov.za</u>

ABSTRACT

The review of infrastructure designs in support of water use and waste management license applications for municipal, industrial, and mining waste has developed and transformed along with improved technology and changes in legislation since 1994. This paper presents a regulators perspective of commonly repeated deviation from accepted norms and standards in the engineering profession as applied to pollution control facilities. An awareness of the water resource development being supply driven until relatively recent times leads to an appreciation of the changing philosophy in respect of water conservation and pollution control, as well as essential amendment to principles and procedures. Emphasis is placed on the standards of today with experience reflecting on the past one thousand design reviews, leading to conclusions and recommendations for facility owners and practitioners. Examples of procedure, mechanisms, performance, specifications and socio-economic benefits are addressed. Some illustrations of sound practice are presented as reference works.

1. INTRODUCTION

The development of water resources infrastructure reflects an increasing rate in consumptive use with time, and that only in recent decades has appreciation of water conservation and resource quality grown significantly. The process and practice followed in pursuit of authorisation for waste management facilities has evolved significantly over the past three decades with changes in philosophy, technology and performance standards. The need for and process of change with time is reported along with some of the experiences to which the regulator has been exposed. The intent is to provide an understanding of the review process with its responsibilities and limitations while simultaneously highlighting elements of the practice which are detrimental to the resource requiring protection, to facility developers or owners, and to design and construction practitioners.

The range of experiences and case studies reported on addresses the phases through which performance standards changed. It is not intended to be an all-embracing report on state of the art technology, but it is intended to report on the reasons for accepting or rejecting proposed designs and constructed works for the future benefit of the industry which seeks compliance with performance standards in a cost-effective manner.

2. CHANGES IN PHILOSOPHY OVER TIME

A brief overview of water resources development legislation and commensurate regulatory structures and objectives gives significant insight into the rate of change of development with time, with associated generation of waste or pollution and significance attributed thereto.

2.1 The 1800's

Taking ourselves back in time to the 1800's we would have known of the history that had brought us to that time – a fairly sparsely populated country which had seen several colonial powers and regional wars come and go. The Portuguese, the Dutch and the British amongst others had visited the country. In the late 1800's the former provinces of Natal and the Cape were under British rule while the Transvaal and Orange Free State were Boer Republics.

The establishment of a hydraulics division in 1875 under the Commissioner of Public Works in the Cape Colony marked the birth of a very important Department of State. This Department's work varied widely and was of the highest technical order, which was indispensable to the development of all sectors of the economy at that time. The first hydraulic engineer was John G. Gamble who was an extremely competent engineer. The son of the famous Andrew Geddes Bain, known as Thomas Charles John Bain followed him in 1885.

In 1903, following the changes brought about by the two South African wars, arrangements were made to second two irrigation engineers (Messrs Kanthack and Hurley) from the Indian Irrigation Service to each of the colonies of the Cape and the Transvaal. These two engineers played a major role in moulding the early water policies and development in South Africa.

During the period 1902 up to the Union in 1910, water matters were dealt with in the four colonies (Cape, Transvaal, Natal and the Orange Free State) as follows:

In the Cape the Irrigation Department was mainly a technical department attached to the Public Works Department with F. E. Kanthack as the Director, which had only scanty funds and a small staff component to undertake responsibilities. It was however due to the Cape Irrigation Act of 1906 that some extraordinary progress was made by a policy of assisting irrigation development through irrigation boards which included irrigation farmers who were required to allocate and distribute water in their districts. However, the lack of staff and funds severely hampered the essential task of collecting hydrographic data and systematically surveying the colony;

In the Transvaal the Chief Engineer F. A. Hurley headed the Irrigation Department which fell under the administration and control of the Secretary for Lands. The Transvaal concentrated on investigation of major projects, most of which proved to be too expensive to implement;

In the Orange Free State irrigation matters were dealt with by the Director of Public Works; and

In Natal irrigation matters fell under the Surveyor General and for all practical purposes no irrigation work was undertaken.

The Union Irrigation Department formally came into being by the establishment of a new Act, Act no. 8 of 1912, known as the Irrigation and Conservation of Water Act. The objectives of this Act were to consolidate and amend the laws enforced in the Union relating to the use of water in public streams for domestic, irrigation and industrial use and to provide facilities/infrastructure for the irrigation of land and use of water. This Act was destined to encourage the construction of storage works where the river flow during the low flow season was insufficient for direct irrigation by extracting water from run-of river diversion works.

At Union, considerable reorganisation and rationalisation took place. The way forward then took the form of active involvement of groups of irrigators with a policy of systematic research and investigation taken from the Transvaal model. Thus, Kanthack became the first Director of Irrigation and F. A. Hurley the Assistant Director under the Union. The organization was

established to administer and implement the provisions of the Act, focussing on decentralisation. Decentralisation took the form of a Circle Engineer who was responsible for everything within his circle. Head Office essentially controlled and reviewed the activities that took place in the 9 circles. The period 1912 to 1914 was largely taken up by reorganisation, establishing circle boundaries etc. and this period was immediately followed by the first World War which brought about new challenges as many staff members enlisted for service and the prolonged drought was broken by unprecedented rain in 1916.

So it was in the following years that dams like Hartbeespoort Dam, Lake Mentz; Tygerpoort; Kamanassie; Grassridge and Lake Arthur were built.

Co-operative governance was investigated as A. D. Lewis was called upon to investigate development of the lower Orange River that had formed the boundary between the South African Union and German South West Africa. Lewis left Cape Town on the 20th of November 1912 by horse and cart. Only two of the four horses drawing his cart made it to Pella on the 27th of November due to the tough going. Thereafter he left the horses and cart behind and made his way by foot carrying all necessities with him. Two weeks later he had covered the 400km down river to the Orange River mouth, making notes of every physical feature and irrigation potential. By the 30th of December 1912 Lewis had completed a report on the irrigation potential of the lower Orange River.

The onset of the depression brought about actions to relieve unemployment in various districts, and projects such as the Pongola Irrigation Scheme were started in 1932. Due to the increase in hardships for the unemployed and the consequences of the drought the Department of Labour requested that the Department of Irrigation fast track further schemes and the Vaal–Harts and the Loskop irrigation schemes were started.

Further changes were brought about with the Vaal River Development Scheme Act, Act 38 of 1934 which had the notable feature of the tendency towards State ownership of water.

At the end of the 1930's the Department had a large staff component and many resources associated with the rapid growth in construction. Thus the outbreak of the Second World War brought about changes yet again with the Director of the Department of Irrigation being seconded to the Technical Committee of Defence on War Supplies, while a large number of officers took military rank in the Works Directorate and many other staff members became the core of four companies for the Mobile Field Force. Over 50% of the Department's technical staff was released for military service.

The year 1945 brought a radical change in thinking on water management. During the past half century the Department's emphasis had been on supplying water to irrigators who had used much of the water rather extravagantly. The ever-growing needs of expanding mines and industry as well as domestic use and the acceptance of the fact that the water resources were limited required a complete change in water legislation. Thus the functions of the Department were expected to change. As a first step pro rata tariffs for irrigators were introduced as far as possible, rather than the flat rate based on land schedules. The Minister was also empowered to grant subsidies to municipalities for the construction of municipal water supply schemes. The next step towards meeting the growing demands was to establish separate planning and research divisions in 1949.

On the 7th of April 1950 the Governor General appointed a water law inquiry commission to investigate and report on matters related to the existing laws and their required amendments in order to provide for the utilisation of water resources, to the best advantage to the people as a whole. The result was that Parliament in 1956 passed an Act that repealed the 1912 Act and heralded a new era in water resources in South Africa. The new Water Act, Act 54 of 1956 specifically provided that there shall be no private ownership of public water i.e. in a natural

stream of water whether visible or not which flows over two or more original properties in a defined channel and which is capable of common use. This act also placed water use for agriculture, industry and urban demands more or less on an equal footing. Riparian rights were retained where the State did not control the water that is to the extent that riparian owners were entitled to a fair share of the normal flow of a public stream. This act also gave the Minister absolute control over water in dolomitic areas and subterranean water controlled areas. The host of new responsibilities placed on the Department lead to the establishment of additional divisions and sections such as the Division of Water Utilisation with its sub-divisions of agricultural water and industrial water; the separation of the design and planning functions; the creation of a hydrological division and the formation of a section to deal with the administration of permits for the abstraction of water etc.

In 1962 the Prime Minister announced in Parliament the development of the Orange Fish River project. This yielded another change from the norm of planning, designing and constructing in-house by the introduction of the use of consulting engineers and contractors, for the design and construction of certain components of the work such as the main dam and tunnel. In 1966 the State President appointed a 15-member commission to investigate all matters pertaining to water and this commission found a need for investment in scientific research. The hydrological research centre at Roodeplaat Dam was approved in 1969/1970 and opened in 1972. A number of regional committees were also established to advise the Minister of Water Affairs on matters including interactions with neighbouring states.

The 1970's were characterised by multi-purpose dam development projects. By the 1980's the storage infrastructure development rate had slowed and the Department had been referred to by some members of Cabinet as a junior department. In 1992 an interim government came into being as preparation for the first democratic election of the country in which all South Africans of age participated. This brought about a process of development of principles for water resources management and a new legislation – the National Water Act, Act 36 of 1998. The primary objectives of which are, sustainable water resources management and poverty alleviation.

2.2 The Democratic Era inheritance and changes

Today South Africa is a relatively young developing country in which the industry matured following a foundation in both agricultural expansion and mining practices in the hinterland. A century ago the results of early mining raised very limited concerns with respect to pollution, and legislation was introduced in 1935 to assist with the management of water resources in the upper Vaal River catchment, which is one of the major rivers of the country and situated to the south of the gold mining reserves. Cities such as Johannesburg developed around these mining practices. For many years pollution due to other sources such as municipal solid waste were not considered to be a serious threat to the water resources nor environment.

1960	Final Report Interdepartmental Committee on Dolomitic Mine Water: Far West Rand, DWAF
1963	Council for Scientific and Industrial Research (CSIR) "Commentary on the Final Report of the Interim
	Departmental Committee on Dolomitic Mine Water: Far West Rand" 28/02/1963/10/02/1964
1995	Screening Surveys of Radioactivity in the Mooi River Catchment by the Institute of Water Quality Studies
	of the DWAF
1996	Scientists predict West Rand Decant in 2002 and suggested a solution in "An Integrated Strategic Water
	Management Plan for the Gauteng Gold Mines". The success of the proposed solution is dependent on
	the mines, water suppliers, water users and Government adopting an Integrated approach - with
	Government taking the lead role. The Western Utility Corporation developed an alleged technical and

	economical viable solution but at the time of writing, Government has not given approval to their initiative,
	Government alleges that the polluter cannot be allowed to profit from the pollution.
1999	Report, "Radioactivity Monitoring Programme in the Mooi River (Wonderfonteinspruit) Catchment".
	Institute for Water Quality Studies, DWAF, April. Mining activities are a major contributor to uranium and
	uranium series radionuclides within the catchment. Concentrations decrease downstream of the sources,
	indicating removal from the dissolved fraction by interaction with sediments.
2002	Publication of the "Radioactivity study as sediments in a dam on the Wonderfonteinspruit Catchment".
	Conducted by the Council for Geoscience and commissioned by DWAF (Wade et. al.) 2002 (WRC)
2002	Publication of the "Tier 1 Risk Assessment of selected Radionuclides in sediments of the "Mooi River
	Catchment". WRC Report 1095/1/02 by P. Wade. Radionuclides are concentrated by sediments
	downstream of their source. Sequential extractions show that these Radionuclides are distributed in
	multiple phases within the sediments and that they may be remobilised by environmentally by plausible
	chemical processes such as AMD.
2002	Coetzee et. al. of the Council of Geoscience reported on "Uranium and heavy metals in sediments in a
	dam on the farm Blauwbank." The study confirmed the findings of Wade et. al. and used further
	sequential extractions to characterise the sediments in a dam downstream of mining activities in the
	Carltonville area.
2005	Publication, WRC on "Impacts of gold mining activities on water availability and quality in the
	Wonderfonteinspruit River Catchment". Mining related impacts such as large scale land degradation
	associated with dewatering of domestic aquifers and widespread pollution of surface water and
	groundwater systems are discussed.
2005	Publication, Council for Geoscience, "Catchment contamination of wetlands by the Witwatersrand gold
	mines processes and the economic potential of gold in wetlands" by H Coetzee et. al, Report number
	2005- 0106. For more than a century the mines of the Witwatersrand have discharged contaminated
	water into the streams and rivers of the area, which led to a formation of a system of large wetlands.
	Concerns have been raised about their ability to cope with the pollutant loads flowing into wetlands.
2006	Publication of "An Assessment of Sources, Pathways, Mechanisms and Risks of current and potential
	future pollution of water and sediments in gold mining areas of the "Wonderfonteinspruit Catchment".
	Report WRC, H Coetzee et. al. Council for Geoscience, 2004, Report number 1214/1/06
1	

Figure 1: Publications showing awareness of mining related pollution over the past decades (Ms M Liefferink 2012, Environmental Justice Forum)

As recently as the 1970's a senior official within the regulatory system had stated publicly that landfill waste was not considered a source of pollution to be of concern. The practices for land filling were thus unregulated and municipal solid waste was disposed of in unlined abandoned quarries, random valley fills, and in any other suitable or accessible positions including as fill material to reclaim wetlands.

It was during the 1980's that an academic institution established a research programme to look into whether landfills were indeed a source of pollution or not. This program looked at two existing facilities which had been operating for many decades, the one facility known as Waterval was a site serving the early gold mining city of Johannesburg. The other waste facility was situated at the other end of the country just outside the city of Cape Town and known as Coastal Park. The investigation into these waste bodies included aspects of conventional geotechnical engineering such as drilling auger holes through the waste body and profiling the holes with depth, keeping a record of moisture content, extent of waste degradation, type of waste, extent of ash, and layering, along with the presence of free liquid. This investigation concluded that landfill is indeed a source of pollution and that the main drivers of leachate development were related to drainage of surface and surrounding water; the moisture of the waste being deposited including whether co-disposal was taking place of solids and liquids; and the climatic water balance at the site. The research process had also included monitoring of groundwater with distance from the waste facility and it was noted that in the case of Coastal Park landfill, a pollution plume was moving off site at about 4m/annum.

2.2.1 Development of Initial Waste Management Philosophy

This research led to the belief or philosophy that it was only necessary to contain the most hazardous of waste material, whereas for small sites or low risk point sources of pollution the groundwater regime could employ the philosophy of attenuation for protection. During the early 1990's the regulatory body responsible for water resource protection developed a suite of guidelines which became the accepted standard against which the permitting of landfills took place. These standards were based on the philosophy that mitigation can be achieved by containment for the most severe pollution source and attenuation for the low significance pollution sources, with a range of standards between these two extremes. Classification of waste was thus addressed by toxicity and concentration, leading to classification of waste as either hazardous or general. The size of a site was taken into consideration based on the rate of waste disposal leading to a second parameter of large, medium, small or communal facilities. To give effect to the research result which identified available water as a critical factor, it was accepted that a third factor would be water balance at the particular site, with the leachate producing facilities conceptualised as being those situated at positions where, for the wettest six months of a year the rainfall would exceed evaporation. Sites are thus classified with a third parameter as either water surplus or water deficit.

Figure 2: The 1990's philosophy on pollution generation and range of mitigation (After J Ball 2002) (a) The extreme philosophies of dilution and dispersion relying on attenuation through a range of standards to containment.

(b) The concept of water balance showing water surplus and water deficit areas based on precipitation and evaporation only.

The classification of sites as hazardous or general; large medium or small; and water surplus or water deficit then led designers to minimum requirements for containment barriers beneath such facilities. It is recognised that these containment barriers did not pursue containment to the extent that was reasonably achievable, but allowed for some dilution and dispersion. Thus only hazardous waste facilities in recent years generally employed a double liner system of which at least the primary liner was a composite liner made up of both a geomembrane and a compacted clay liner, and this compacted clay liner being made up of multiple layers with a total thickness of at least 600 mm. In all cases where double liners were specified as a minimum requirement, they were separated by a leak detection system. So too was it a minimum requirement for all containment barrier systems incorporating a geomembrane that there shall be a protection layer between geomembrane and the overlaying leachate collection system. For the general waste facilities clay only barriers were employed with thickness in proportion to size classification, and leachate collection systems required only for those sites situated in a positive water balance area. This range of documents gave waste facility owners guidance beyond design and construction, and included operation and monitoring of performance. The minimum requirements were used extensively at a time when the country was going through significant change in legislation and a growing environmental awareness with recognition of the limits to natural resources. Thus while these documents were employed for over a decade leading into significant law reform, the regulators and professional societies involved in waste management used the opportunity to ascertain the suitability of the philosophy and the requirements.

There were several lessons to be learnt from applying these requirements or standards in the local frame-work. It was recognised early on in their application that even in the driest of regions, falling well within the water deficit classification, leachate was indeed produced within the waste body and was as a result a source of pollution. Similarly, it became quite apparent that the waste stream to landfall varied with time and position, and this had an influence on the performance of leachate collection systems in the water surplus areas. These leachate collection systems were found to block readily, as they were not protected by filter systems defined within the standards and thus not employed by the owner or designer. So too was significant experience gained in the use of geomembranes as liner materials.

The use of geomembranes in South Africa had historically been for applications where water containment was required, often associated with inter basin transfers, or delivery of raw water over significant distance from its source and hence competent storage was required for this valuable asset.

2.2.2 Development of Modern Philosophy

The new-found international relations with the world allowed South Africa to exchange technology with countries willing to do so and the advent of the Internet facilitated an even greater rate of sharing of knowledge and experience.

The new legal framework placing environmental protection and human rights high on the legislative agenda (The Constitution of the Republic of South Africa, 1992 and 1996, Bill of Human Rights) demanded a rethink of waste management and pollution control measures. A hierarchy of waste management strategies emerged with a priority to address the rapidly deteriorating limited water resources. It is widely known that with the long history of mining practices in certain parts of the country, that salts are a significant problem in the ground water

and river systems (Brink 2009). The assimilative capacity of many watercourses and rivers was exceeded bringing about the de-oxygenation and anaerobic conditions with associated loss of biota. Many human lives and the health of communities or persons who made use of run of river water supplies were placed at risk.

Figure 4: Visual evidence of waste and mining pollution in rivers

- (a) The confluence of the Vaal and Klip Rivers and
 - (b) The confluence of the Steelpoort and Klip River (acknowledgement RB Martin)

This attention to the significance of South Africa's water resources was escalated largely by the World Commission on Dams SA Initiative which recognised the scarcity of water in this region of the world. Similarly, the dependence of poor persons on natural resources drew attention to the water quality of river systems which was further emphasised by acceptance of international treaties and the importance of bio-diversity and wetlands in the remediation of water resources impacts.

Despite the privilege of having a domestic geomembrane manufacturer and several lining installation contractors, as well as a local geotextile manufacturer with several suppliers, the investigations and performance assessment of geosynthetic products was undertaken by academic institutions to a large extent, and to a lesser extent by the regulator itself. With the limited resources available for research, the use of international literature, access to material producers from around the world, and cooperative studies were pursued.

2.2.3 Monitoring of Minimum Requirement Based Facilities

A further consideration of these shortcomings of the Minimum Requirements was realised as the regulator pursued monitoring of existing facilities, and in particular those facilities incorporating a geomembrane liner. The requirement that hazardous waste facilities and large leachate producing facilities monitor the performance of the primary liner through the use of a leak detection system was fatally flawed due to the prescriptive means. This leak detection system is given effect by a secondary liner which in all cases except for the hazardous waste lagoon, is a compacted clay liner only, and typically of the same material as within the primary liner but even thinner (usually only two layers). It was thus clear that the apparent reporting of suitable containment by the primary liner systems was in fact not a true reflection of the primary liner performance, but rather a failure of the secondary liner to report leakage exceeding the expected threshold. This was deemed a fatal flaw of the minimum requirements, and in particular for the most important waste streams being those which receive the toxic and larger volumes of waste.

Although the Minimum Requirements 1998 applied to waste management, the mining regulations under the National Water Act came into being in 1999 with greater emphasis on enforcement in 2006. The monitoring of drainage systems to 3 coal residue deposit facilities in Mpumalanga during the period 2007 to 2011 gave greater insight into liner performance.

Although sites 1 and 2 were adjacent to each other and site 3 some 50km away, the drainage systems of finger and toe drains above the site 1 compacted clay only liner compared to the composite 1,5mm thick LLDPE geomembrane and 450mm thick CCL of site 2 showed the latter reported approximately 118% more leachate per month in drain flows on average (over different lengths of monitoring periods). A comparison between site 1 and the distant site 3 of similar composite liner showed a higher drain flow of the order of 400%. However, by comparing the 2011 season results only so as to remove climate and rainfall as a variable, the drainage flow increased by about 270% above a composite liner compared to a clay only liner. (Acknowledgements to Jones and Wagener Consulting Engineers). Drain flow should not be confused with seepage losses through liners. Thus the difference in volume of retained polluted water is emphasised for appreciating water conservation as well as pollution control.

2.3 Importation of Technology and Renewable Water

Regulations employed in foreign countries were considered for their suitability to the South African landscape. In particular the countries of Australia, Canada, Germany, and the USA along with the supporting technology were studied.

An analysis of international standards led the regulator to believe that South Africa had one of the lowest standards of containment for waste amongst those countries in the world which did regulate waste containment barriers systems at that time. The worldwide survey (Koerner and Koerner, 2007) confirmed that the world standard for waste containment, irrespective of whether the waste was hazardous or general, was the employment of a composite (geomembrane plus compacted clay in intimate contact) liner within a barrier system, whereas South Africa was to a large extent relying on clay only liners for partial containment and in many cases relying on rudimentary drainage layers and clay only liners for controlling the rate at which pollution took place.

Although it was tempting to adopt a standard from another country which had experience in modern containment standards for barriers systems, the South African situation of a large industrial and developed economy in a water scarce environment had to be taken into consideration. The water availability per capita per annum needed consideration to reflect the acceptable assimilative capacity of our ecosystems within watercourses.

Australia	2 000 - 4 000	
Canada	> 10 000	
Germany	1 000 – 1700	
Scandinavia	500 - 4 000	Anual renewate water supply (infigurary set)
South Africa	800	
United States of America	4 000 - 10 000	1000 - 1000 Hoda

Table 1: Estimated Renewable Water per person/annum in cubic meters per person per annum
for selected country as at 1995, extracted from global image.

The small volume of water available per person per annum in South Africa reflects the importance of maintaining aquatic ecosystems in a healthy functioning condition. Thus it became quite apparent that the historic philosophy of the past 20 years which allowed for dilution and dispersion relying on attenuation was not acceptable.

3. DEVELOPMENT OF NEMWA REGULATIONS 2013, COMMENCING IN 2009

While South Africa has a lean economy it has an obligation to fulfil multiple responsibilities such as alleviation of poverty; the provision of basic water of an acceptable quality to all its inhabitants; the right to a safe environment; and the protection of its environment for future generations. The prioritisation of needs and regulation required careful consideration so as to maintain a healthy economy and regulatory actions should be fair and just to participants within the social and economic framework.

It was thus decided to embark upon a consultative procedure with proposals to refine the historic minimum requirements leading to national norms and standards for the classification and containment of waste (following a revised waste assessment process) within the waste management hierarchy, which prioritized waste reduction and reuse only then followed with disposal to a facility designed for containment. This strategy would clearly lead to a change in waste stream and a change in resultant behaviour of the waste body. The intention was to move away from numerous small sites and move towards regionalisation of municipal solid waste facilities. An example of the change in waste stream was the regulators introduction of paying for plastic bags, so readily used in South African society at that time. This change brought about a reduction in the plastics content of new municipal solid waste streams, which changed strength characteristics and resultant angle of repose of waste and hence the outer slopes.

3.1 Experiences of Success and Failure

The dawn of geomembrane liners in South Africa during the 1960's was led by the use of butyl rubber material in water containment applications, largely for government water supply schemes and power stations. These water retaining reservoir linings made use of mechanical joint systems initially and as technology and polymers evolved into the high density polyethylene so did the joining systems between membrane sheets develop into vulcanisation and extrusion welding respectively. These facilities contributed to knowledge and experience which expanded into applications of early industrial lagoon linings which were generally thin geomembranes of mixed polymer installed prior to the development of wedge welding techniques. Many of these installations have served well to this day and some of the examples of unsatisfactory performance have accelerated understanding of lining technology, compared to compacted clay only lining systems.

A barrier system comprises of both drainage to reduce pressure head and liner to give effect to the drain and to control the rate of advection (seepage and diffusion) losses. (Rowe et al 2004).

The use of Minimum Requirements for negative water balance areas had shown that leachate is produced in waste bodies irrespective of the site water balance. Furthermore, the efficiency of drainage in both negative and positive water balance areas was severely compromised by the lack of filter protection or separation layers between the waste and the aggregate (Shamrock 2009) as well as by precipitate and organic clogging (Legge 1990, Rowe, 2004). Similarly, experience in soil mechanics as applied to the clay cores of embankment dams and to tailings dams had emphasised the high variability in performance of fine grained materials with respect to seepage (Henderson 1968, ICOLD Bulletins 55, 95, 97, 99 and 143). Attempts to modify the performance of clays to improve retention characteristics had been met with very limited success both in raw water reservoirs and waste containment clay liners, from which seepage continues to this day and is detected in pressure relief wells or monitoring boreholes respectively.

This internationally accepted understanding of clay performance was augmented by the knowledge and experience of various geomembranes as used at the time, as well as by international literature, to propose a way forward which recognised the radical change in

policies contained in legislation and to match a containment performance with a risk based waste assessment.

In so doing, the objectives were set to provide significant improved performance of water conservation and pollution control, without substantial cost implications, and requiring "a simple set of rules" to allow for competitive designs employing alternatives, without excluding persons from the already scarce skilled resources of the country. Hence, a graphic based on technological understanding of waste and materials performance in a system, with allowance for alternatives and defined performance was pursued. Although granular drainage layers with filter protection were illustrated, alternative materials of equivalent performance would be allowed for the leachate collection and/or detection systems, and similar for the liner components. Hence, although South Africa had a history founded in butyl rubber and limited PVC membranes, the majority of experience in recent decades had been with high density polyethylene (HDPE) which was thus selected as the specified liner. Experiences with unproven alternatives promoted by contractors and consultants without complete justification had led to severe negative impacts for facility owners, in both the private and public sector the use of material such as flexible polypropylene alloys has to date not been proven to be a suitable alternative in all respects, referring to chemical resistance over and above material strength properties. This justifies the regulatory requirement for more than a concept design.

3.2 Transitional Arrangements

The first concept of barrier systems to be aligned with a new waste risk assessment procedure, was presented at WasteCon 2009. The lead authority continued public engagement through multiple forums to present and invite comment on the proposed regulatory system, including cost analysis, resulting in gazetting for public comment in 2011 and 2012, before implementation on 23 August 2013. During this time several facilities owners and designers embraced the philosophy of water conservation and resource protection along with the suite of principles and designed facilities in pursuance of such standards. There was however an objection based on cost which was largely ascribed to the aggregate of a hazardous waste facility and hence the prescriptive thickness was reduced from 300mm to 200mm while maintaining the performance criteria of atmospheric pressure. Cost equivalence was achieved and demonstrated for the former hazardous and the now Class A barrier systems as well as the former medium and large general waste site clay only attenuation liner systems with Class B barrier systems, but the pollution generating medium and small sites were not part of the waste management strategy which looked towards a hierarchy in resultant changing waste stream, abandonment of pollution dilution relying on attenuation, and regional sites. This cost equivalence between historic standards and current standards remains true; however, the performance of today's standards at equivalent cost is far superior to the historic philosophies, as recorded above. The containment performance of barrier systems incorporating a composite liner is as much as a million times better than the former clay only liners, the extent influenced largely by construction guality assurance, and noting that for water deficit areas the requirements addressed detection of leachate and not management thereof.

Nevertheless, with the Minimum Requirements 2nd Edition, 1998 classification system, those designs that pursued compliance with what became the NEMWA 2013 regulations, were given some latitude with respect to compliance with all aspects at the time of submission or application allowing for future address of shortcomings prior to construction. This practice required a significant increase in skilled capacity of the regulators who were called upon not only to provide guidance to license applicants (and their professional service providers), but also to consider multiple amendments to initial designs and additions such as Construction Quality Assurance (CQA) reports.

Following the implementation of the regulations, there was a peak in demand for license applications which resulted in dissatisfaction over time taken for licensing (Palm and Visser

2015). This along with other prior constructive criticism by a consultant's registered person of the level of responsibility or "power" vested in the regulators design reviewer is appreciated, and responses thereto included not only the change from a single reviewer to a panel of civil engineers, but also led to a closer working relationship with the professional body (Engineering Council of South Africa) and other organs of state. A statistical analysis of review periods over the 2016/17 financial year shows average response time to be 14 days and that this is reduced even further at present but cannot be ascribed only to an increase in capacity but also a further reduction in number of applications lodged. Statistics are now kept to reflect applicant's readiness and time related compliance. The procedures relating to water use license applications have instituted significant reform in efficiencies and the claims of waiting for several months are untrue, however, this has implications for unsubstantiated design proposals.

The challenge resulting today from the transitional period is whether the sites licensed under the Minimum Requirements site classification system can be reclassified under the NEMWA Regulations 2013 system which has a different waste risk profile and barrier performance standard over and above different philosophy. Thus it is worth noting the June 2015 Constitutional Court judgement on the matter between Shoprite Checkers and the MEC for Economic Development, Environmental Affairs and Tourism: Eastern Cape and others, by Messrs Froneman, Moseneke and Madlanga, the following is quoted in respect of a licence:

"Further, licences are subject to administrative withdrawal and change. They are never absolute, often conditional and frequently time-bound. They are never there for the taking, but instead are subject to specified pre-conditions. In time, a licence holder may cease to be suitable to hold the licence and they are also not freely transferable".

The sections leading up to the judgement were extremely interesting in respect of consideration of the Bill of Rights including property, dignity, natural resources, access to food and water and transformation, as shown in the extracts "each individual case must be adjudged within our constitutional framework" (paragraph 39) "There are other similar kinds of potential constitutional entitlements in section 25: to bring about equitable access to all South Africa's natural resources; to gain equitable access to land; and to land restitution. In addition to these land-related entitlements there are specific provisions dealing with socio-economic rights: access to adequate housing; health care services; sufficient food and water; and social security (paragraph 42), and "Acceptance that the constitutional conception of property may embrace different kinds of entitlements of the past do not necessarily warrant protection in perpetuity, provided that appropriate and reasonable transitional provisions are made" (paragraph 51).

The reviews undertaken for legal proceedings are not discussed here, however, the principles in law and technology are generally common.

4. LESSONS FROM REVIEW CASE HISTORIES

The life cycle of a waste management facility or similar pollution control facility often spans more than one generation. It is thus obvious that today we are required to address situations for which decisions were made in the past but we live with the consequences thereof today. The following reflections are placed on record to succinctly emphasise aspects of the particular activity.

Case 1:

An existing industry was running out of airspace for disposal of waste in the unlined rock quarry with resultant adjacent water resource pollution for which the owner was being held accountable. The entity pursued a risk based approach to ascertain containment barrier needs, the result of which advocated a triple liner system for this single waste stream. Thus the

developer reverted to the Minimum Requirements for a hazardous waste and installed a double composite liner barrier system with leachate collection system (LCS), leak detection system (LDS) and decant to a leachate dam. Sometime after licensing, an amendment was applied for in about 2008/2009 to dispose of additional waste streams being liquid at approximately 95°C and another stream rich in calcium. During the then regulators review the individual sought confirmation from a colleague of the proposed acceptance, and the response is unprintable. A subsequent international expert review was called for with the Terms of Reference based on an extract from the Minimum Requirements 1998 which led to the basis of conclusions being "Fundamental to the study summarised in the Report is the premise that provided the leakage through the secondary liner is less than the Department of Water Affairs and Forestry's (DWAF) Minimum Requirements allowable outflow rate of 0.03 m/year (822 l/ha/day), then the performance of the facility (either the Waste Disposal Area or Storm Water Dam) would be acceptable". The owner continued investigation into performance through the operational life which revealed the extent to which a liner survives installation but can be damaged during investigation, and revealed the limited durability of some geosynthetic components even when covered by a geomembrane (i.e. the GCL carrier component).

This situation reflects the lack of appreciation of elevated temperature effects on service life and of the effects of cation exchange on the GCL alternative to clay component of the composite liner. This shows that it cannot be assumed that all persons involved in decision making necessarily have all the appropriate technology at hand required for a competent decision. Furthermore, the ToR provided to the expert external reviewer was misleading and assumed the Minimum Requirements specification of a clay minimum performance was the acceptable average pollutant transport which fails to recognise the superior performance expected of composite geomembrane plus clay liners, let alone the secondary liner and effects of thermal conductivity which are all crucial to understanding the system as a whole and the mechanisms at play. The continued interest and investigation of the owner into the performance of that facility has led to a revised design and improved performance of the next phase which confirms the value of owner participation in review processes.

Case 2:

At a similar period a different industry with a very high organic content disposed of waste at a clay only lined site and required a footprint expansion. Due to the dolomitic foundation conditions the expansion employed a precautionary approach and the general site footprint expansion employed a double composite liner with granular LCS and an alternative material geodrain LDS. The authorised extension pursued an amendment application to address inter alia dust suppression using leachate and a revision of type of waste to be disposed of to include a small rate of hazardous waste deposition. The conditional acceptance included temperature monitoring and the results showed a rapid rise in temperature at the base of the landfill to well over 60°C. Elevated temperatures can lead to damage of leachate collection systems and composite liners, and gas extraction systems as well as production of odours and increased leachate (Stark and Jafari 2017; Benson 2017; Reinhart et. al. 2017). The subsequent revised operation and monitoring shows leachate at the decant points to be varying around 40°C. The owner, engineer, and authorities communicate regularly in respect of investigations and alterations with ongoing monitoring of leachate quality, quantity and temperature while operations are ongoing.

This situation reaffirms the value of regular communication between owners and authorities and the spirit of cooperation required to avoid or minimise environmental and financial impacts. The relevance of international research and technology was confirmed, with the acceptance of parameters and boundary conditions having different influences. Case 3 (a) and (b):

The post 2009 design of a large general waste site pre 2013 and constructed post 2013 as well as a small municipal waste disposal site in the same period, sites formerly classified as GMBand GSB- both employed a geotextile protected aggregate LCS over a composite liner of geomembrane plus GCL, above a blanket drain. Although adequate clay for a CCL was available on site 3(b), the motivation for use of a GCL was the speed of construction, and the same motivation was provided to use a geotextile protection layer as alternative to a 100mm soil layer above the geomembrane. In both cases construction quality assurance (CQA) was not put to the competent authority, and the designs were presented after construction completion.

In both cases the designer did not appreciate the increased hydraulic gradient across the geocomposite liner, nor the effect of the underlying granular drainage layer as a capillary break. Furthermore, the record shows only the geomembrane installer's quality assurance results, but not the owner's independent CQA nor the supervisory engineer's results. It is thus not surprising that during the operational phase the Case 3 (a) is considered to result in excessive groundwater pollution and Case 3 (b) does not show groundwater pollution, although the invert level of the waste cell is lower than the operational level of the leachate dam. These designs by the same designer reflect a lack of appreciation of a barrier system being defined by performance of both the drainage layers and the liner layers as individual components and as a system. This is amplified by the leachate dams at these sites not having under drainage (whereas the large cell areas have an expensive under drainage layer) and the result has reflected in one of the sites experiencing hippos or whales beneath the liner of the pollution control dam (where the load on the liner is lower than in the waste cell) and below liner pressures are not adequately resisted by liners with limited or no ballast protection layer.

Cases 4 (a), (b) and (c):

The post 2013 implementation of the NEMWA Regulations was considered to be readily achievable by designers. Designs submitted for Cases (a), (b) and (c) were medium sized facilities, all embracing alternative geosynthetic materials as full or partial replacements for compacted clay and geomembrane protection layers. The sites do not all have the same foundation conditions nor geohydrology with Case 4 (a) being a site in the region of South Africa's coal fields. The designer reported that a specific GCL alternative was required to mitigate cation exchange of allegedly calcium enriched groundwater at 30m depth. (Groundwater in the coalfields area is known for being polluted by acid mine drainage.) Nevertheless the brand specification for an owner being an organ of state would have to have been justified, had the design been accepted technically. The design had failed to recognise both the effects of municipal solid waste (MSW) leachate on the GCL especially as the product specific GCL had an impermeable backing denying its prehydration by foundation moisture. Furthermore, the design could not address the stability in the event of geomembrane discontinuities allowing initial hydration by leachate and this leachate being trapped between the geomembrane and the impermeable backing of the GCL.

The predictable undrained conditions that would develop and substandard GCL performance induced by the specification reflect a disturbing trend. The failure to understand mechanisms of stability and equivalent performance of alternative materials under site specific conditions emphasises the limited understanding of soil mechanics and geosynthetics and their interactions. It should be noted that not only is brand specification considered anti-competitive, in the situation where facility owners are organs of state the Treasury Regulations requiring performance based specifications are required. Furthermore, these cases reflect the designers' specifications are not justified and the most cost effective design to the client is not necessarily pursued. Furthermore, these 3 Case studies show the designer to be consistently incorrect and not having intention to deviate from abnormal practice. Still further the failure to provide CQA and performance specifications at the time of application for a license, was an opportunity used to incorporate unjustified interests outside of the regulatory procedure.

Case 5:

A regional MSW with design in accordance with NEMWA Regulations 2013 and constructed post 2016 followed a similar single geocomposite (geomembrane plus GCL) liner with geotextile protection layer and LCS, but recognised the importance of pre-hydration and subsurface drainage was provided by strip drains well below the composite liner. The specifications and CQA were addressed as were alternative materials. The geosynthetic products were as in the above cases reputed for consistency and sound performance. The level of skill required of the contractor was however not addressed, and the client chose to not employ independent nor adequate site supervision during site construction. The result was the post construction resistance of the engineer and authority to accept the facility as constructed in accordance with the accepted design and hence an electric leak survey was undertaken. This showed 19 areas of significant damage to the liner which required repair.

The significance of this post construction CQA review demonstrated the extent to which a sound design and good quality geosynthetic materials can be destroyed with resultant non compliant performance by either the civil contractor and/or lining contractor not being competent and consistent in pursuing performance based standards. It also is an example of the extreme value of electric leak surveys in determining end of construction performance independent of materials quality.

It would be inappropriate to consider pollution control and waste containment reviews without reflecting on some of the larger applications in mining and coal combustion residue deposits. These sites are usually large footprint areas measured in hundreds of hectares with associated Return Water Dams (RWDs) also known as Pollution Control Dams (PCDs). The pollutant stream is almost always assessed as equivalent to a Type 3 waste risk of the NEMWA 2013 Regulations; although consideration is also given to increasing concentrations of pollutants with time as the processed water is recycled or lost to evaporation.

Case 6 (a) and (b):

The coal mining and storage of large volumes of coal for extended periods typically requires a pollution control barrier having performance equivalent to a NEMWA regulations 2013 Class C barrier which was pursued for a coal miner and coal user respectively. The designer pursued a barrier system which at face value appeared to be far higher than the schematic Class C, making provision for a substantive granular leachate collection system of gravel and sand blend approximately 1m thick directly on top of a smooth geomembrane plus GCL composite liner, directly on top of a geotextile and a foundation layer which at these sites was a fine grained sand. Although the designs predated today's regulations and were accepted prior to 2010, their construction was somewhat more recent. A slip failure on first filling with the source material brought the design to the attention of the regulator in Case 6 (a). Saturated under drainage and GCL conditions appeared to be prevalent beneath the geomembrane when inspected after exposure. The translational slide took place predominantly (but not entirely) at the geomembrane GCL interface. A similar design was under construction at site 6 (b) and intervention confirmed the inadequacy of the design with respect to stability.

In both cases the owners, subsequent designer, and reviewers cooperated in pursuing a remedial action. The post failure remedial works amended the address of interface shear and effect of developing undrained foundation conditions, whereas the Case 6 (b) situation amended foundation stability by the introduction of profiling the foundations to a saw-tooth of

approximately 1m height with the amplitude of increasing distance as the overburden pressure reduced. This revised design approach mobilises the passive resistance of the foundation soil and simultaneously reduces the risk of saturated GCL adjacent to thin near horizontal geosynthetic drainage layers.

These examples reinforce the need for pre-design appreciation of internal and interface shear strengths and the consequences of inadequate drainage or drainage induced conditions. Furthermore, the excessive use of geosynthetics brought about instability, and it could be argued that their presence may have reduced service life. Readers are encouraged to familiarise themselves with the GRI report addressing case histories of 20 waste facility failures, all of which are related to liquid presence, either in the foundation, in the case of unlined facilities or above the geomembrane in the case of lined facilities.

Case 7 (a) and (b):

The combustion of coal leading to residual ash for stockpiling or disposal leaves a pollutant or waste having a similar risk level requiring the same sort of barrier performance, albeit exposed to a different characteristic leachate. In the case 7 (a), a facility was designed in accordance with the Minimum Requirements Waste Assessment and Commensurate Barrier requirement of a H:h prescribed layout. The design proposed and accepted in about 2010 but built after the NEMWA 2013 Regulations incorporated a primary composite liner having a geomembrane of 1,5mm thickness and overriding specification defining a particular asperity height for interface shear. The clay component of the composite liner was reduced from the 600mm thickness made up of 4 layers to just 250mm thickness made up of two layers of bentonite enriched hillwash sandy material, each being 125mm thickness. The leak detection system was a 150mm thick sand layer, given effect by a single layer secondary liner of similar bentonite enriched soil. The overlying geomembrane protection layer is followed by sand filter, considered adequate due to the ash being placed dry.

During construction a lining contractor experienced what appeared to be separation in plain (SIP) of the geomembrane during pressure testing of the double wedge welded seams. Although the material reflected compliance with SANS and Geosynthetic Research Institute (GRI) standards, the rolls where SIP had been identified were removed and replaced. Nevertheless, samples recovered from the liner by the license holder and regulator were dispatched for "third party" testing and confirmed compliance with the project specification, however, undertaking tensile strength test at a rate of strain increased to 300mm/minute reflected signs of delamination. It cannot be assumed that this modification of test will identify SIP, but rate of strain and elongation at break may be more informative of polymer used than what is currently understood. Similarly, the use of differential scanning calorimeter (DSC) testing which plots enthalpy against temperature will provide curves with peaks associated with the type of polymer(s) in the geomembrane, and the area under the curve reflects the percentage of polymer types in the geomembrane. It is considered prudent to make provision for test methods outside of the norm at the discretion of the facility owner and regulator as this reduces the risk of products being manufactured to fit standard product test methods, rather than meet the anticipated performance objectives. In respect of the LDS and thin bentonite enriched soil secondary liner it would be unfair to criticise historic decisions; however, it is worth noting that the secondary drainage layer or LDS introduces a capillary break which in turn may lead to accelerated desiccation of the primary liner clay component and simultaneously act as a thermal insulator which would still further reduce performance of the primary liner in the event of heat being generated above the liner. The secondary clay liner would only report leakage when such pollution exceeded the performance of that single layer.

The Case 7(b) ash disposal facility provided a composite geomembrane and CCL liner for its post 2013 Class C barrier performance, but addressed drainage by way of a composite geosynthetic drain. This design may appear acceptable in principle but the performance was not

defined by site specific materials evaluation with particular oversight in respect of filter compatibility between the ash and geotextile component of the thin composite drainage structure, and service life of the drainage structure itself as it undergoes compressive creep collapse and the voids required for leachate transmission do not provide for sediment and precipitate. The interface shear and internal shear of the products and materials, particularly under saturated conditions, would lead to some unacceptable factor of safety.

This case reaffirmed the need for designers to consider barrier systems as combination of drainage and liners, and the need to address service life of all elements, as well as their combined interaction and internal action.

Case 8:

The disposal of reworked historic gold tailings proposed a design comprising partial treatment of the tailings to reduce acid forming potential, and disposal at flatter than normal side slopes i.e. 1v:4h, to provide for vegetative growth commensurate with the rate of rise, and disposal on natural ground with partial interception of pollutant plume by a perimeter blast curtain and its "dewatering" by pumping. The motivation for this design was driven by cost comparisons and descriptive statements of geomembrane risks without providing quantification thereof. The design however failed to recognise that the partially treated tailings resulted in a leachate which was still a significant pollutant. Furthermore, the designer assumed a far higher percentage pollutant recovery from the blast curtain drain in the short term than the regulator and literature assessment and experience (albeit related to pressure relief wells downstream of dams and pollution migration interceptor curtain), but more importantly did not appreciate a barrier comprises of both drainage and liner (such as a grout curtain) and that the drain had no filter design possibility and could thus not be a once off event. This lack of appreciation for filter compatibility associated with drainage was reflected in the revised design advocating a composite liner with above liner protection provided by tailings, drainage through the use of blast rock or dump rock, and filtration by a light weight geotextile placed directly over the dump rock. Consideration of filter compatibility between hydraulically placed tailings and geotextile filter was absent, as was appreciation of the strength requirements for such material, let alone other short and long term performance influences as the nature of the retained material changes, and the drain itself reduces in capacity due to biological action and clogging. Such problems associated with precipitate have been reported in literature since investigations at ERGO in the late 1980s and is reflected in international guidelines including ICOLD Bulletins on filters and tailings dams.

Thus it is recommended that facility developers or owners make use of independent engineering reviews which report directly to the developer and not to the designer.

Case 9 (a) and (b):

The Minimum Requirements made provision for sludge lagoons by way of prescribing a layout in its Appendix 8.2. Some decades later, the expansion of such facilities is considered and follows the same form as at least the primary liner, the total barrier being defined by the waste assessment. In Case 9 (a) an expansion was proposed with significant concern raised due to the increased number of facilities required resulting from the now much slower rate of sludge drying. Drying in new lagoons with a geomembrane base liner retaining the liquids preventing seepage – as desired; however, due to the generally fine nature of sludge the evaporation resulted in limited drying of the upper zone of sludge only. Similarly in Case 9 (b) the capping closure of a sludge lagoon posed challenges with respect to the sludge foundation for the cap being dry to only a limited depth and the capping loading resulting in what appears to be liquefaction of the lower lying material. Both of these cases confirmed the significant superior retention of leachate by a geomembrane compared to that of clay only liners, and proved the obvious in respect of seepage rates for a sludge are typically higher than capillary rise and drying by evaporation rates. The exposed black geomembrane lagoon liner designs did not pursue the limited benefit of 10°C to 20°C lower liner temperature of white reflective layers (Dolez et. al. 2017) for the site conditions where exposed geomembrane temperatures regularly exceed 70°C.

Although there is resistance to liquid waste disposal, cost savings may be incurred in some situations where sludge requires disposal and drying prior to beneficiation or reuse, or additional facilities. This can be achieved with the use of filters specifically designed for the particular sludge and still further accelerated drainage gained by the application of a controlled vacuum to the drainage layer (Weng 2017). This efficiency has been demonstrated in backfill bag technology where gold tailings within a particular geotextile bag would typically drain in three days, but this period was reduced to three hours through applying a low vacuum to an underlying drain. The theory employed is similar to that applied to prefabricated vertical drains. Designers are advised to refer to GRI Report 46 of 2017 and to the reference by Dolez and Blond, 2017 for further assistance in such situations.

Case 10 (a), (b) and (c):

Although designs may be accepted and construction proceed, the design assumptions are put to the test by contractors and supervisory engineers who allow deviation from the design assumptions, or when the design parameters were indicative rather than definitive. In the case of two double composite liner facilities constructed within the past two years, slip failures took place during construction while the leachate collection system of aggregate was being placed over a geotextile cushion layer. Despite the specified materials being used, the Case 10 (a) suffered a slip failure claimed to be due to the contractor placing the stone aggregate in a downslope direction. Each site specific condition can be analysed to show to what extent either downslope or upslope placing of aggregate can take place before slip failure. The performance of the barrier may be compromised in both cases if strain compatibility and the necking of a geotextile panel is not recognised in the design and taken into consideration in the construction method statement. The claim that hot air gun tacking of geotextile overlap addresses this adequately is refuted, as such specifications are merely descriptive and not performance based. The same situation occurred at Case (10) (b); however, the CQA report upon completion of construction raised still further concerns as the report indicated the clays in the primary and secondary composite liners had been compacted up to 10% wet of optimum moisture content (OMC) which for this site ranged around 22%. The authority considered this impossible and called for confirmation of stability including direct shear using actual materials at the said OMC plus 10% which the independent testing facility confirmed was impossible to achieve! It is hoped that the designer, independent reviewer, and independent laboratory testing facility will in future appreciate the meaning of OMC curves and limits to porosity of a soil, as well as the implications of saturation on consolidated undrained and unconsolidated shear strengths. This investigation did however emphasise the need to address rate of rise and density of waste in assessing global and veneer stability. The technology has been practiced in tailings dams for years but has somehow become forgotten when considering other waste streams and containment systems.

The use of international literature and common practice does not however negate the need for the designer to apply their mind to the specific circumstances encountered at the site under consideration. At Case 10 (c) it was assumed that the GCL being of a particular type would not suffer panel shrinkage due to the nature of the carrier material but this was shown to be untrue upon exposure.

Case 11:

The capping closure design of landfills reflects a diverse approach, not necessarily based on science. The Minimum Requirements 1994 and 1998 2nd Edition gave clear guidance in section 8.4.7 as to the function of a cap and its design to recognise the performance of the baseliner under that philosophy. Several designs have been proposed following the historic clay only capping layer approach reflected in Appendix 8.2 without consideration of the baseliner performance, nor recognition of the pollution monitoring borehole results.

The other extreme has been advocated as well in which capping designs have proposed liner systems equivalent to the baseliner norms and standards of post 2013 as a cap over the entire waste or pollutant source, irrespective of whether the site is polluting or not. Such proposals have also misrepresented foundation conditions and geohydrology leading to extensive unnecessary use of geosynthetic materials. The above inconsistent approach shows that some situations fail to appreciate whether the site is polluting or the period of pollution generation has past, while others promote unjustified specified geosynthetic use. It is thus apparent that there is a need for further guidance to the industry on the principles and performance to be pursued in respect of isolating the pollutant source from the environment with respect to water resources protection, and augmented by guidance on air quality management. The designs presented have confirmed the lack of appreciation for drainage and lack of soil strength parameters, although where geomembranes and GCLs are used there has been extensive product related specifications with respect to type of texturing rather than actual performance. Such designs should be addressed by the applicant who pursues cost effective performance compliance. The nature of the waste or pollutant source would influence design with respect to the need for capillary breaks, accommodating differential settlement, veneer and global stability, and whether vegetative or hard capping is preferred (as is the case for asbestos waste).

5. DISTINCTIVE SOLUTIONS FOR SPECIFIC SITUATIONS

On more than one occasion design reports in support of license applications have contained disclaimers which states the designer "accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party" and that no copying of the report is permitted. Such disclaimers render the reports null and void and are returned without consideration.

There are other unusual approaches outside the norm that affects the review consideration which takes a systems approach. Some designs specify performance based on product data sheets without validating the parameters relevance to the particular design, without ascertaining how the parameters change with time nor temperature, and occasionally without ascertaining whether such materials are still available or whether technology has surpassed the specified test method, performance standard, material type, or interaction with other materials. An example of change with time is the reported change in interface friction between a smooth geomembrane and soil (Alzahrani, 2017), let alone the change with time to interface shear strengths due to polymer creep or effects of leachate irrespective of texturing. This lack of attention is especially true in respect of filter design for both granular and geotextile filters compatibility with adjacent soils and in particular fine grained cohesive soils as used in compacted clay liners.

Seldom is consideration given to the difference in performance between the "office specimen" and the material installed with respect to project specific specifications. The post production storage method can influence geosynthetic performance prior to and during installation, especially for geotextiles (ICOLD Bulletin 55, 1986) and for GCL carrier components. Observations on a particular day in a suppliers stockyard using a infrared thermometer revealed the following: Black plastic sheet wrapping at 70 to 75°C; unwrapped

geotextile rolls at 55 to 69°C with colour varying from pale grey to black and the darker the geotextile the higher the temperature, even a red plastic sheet wrapping was cooler at 57°C; as was the temperature of unwrapped black pipe surfaces which allowed ventilation through there stack.

This makes for interesting assessments when considering the rate of UV degradation especially on polypropylene and polyester in relation to thermal conductivity. Similar measurements on geomembranes in Limpopo Province at various sites have shown the upper exposed surface to be at 83 to 86°C at midday, and temperatures of 89 to 90°C measured in the Northern Cape. A limited drop in temperature of the order of 10°C was measured between the upper and lower surface of geotextiles deployed over geomembranes, however, when covered with 100mm of soil the temperature of the liner and number of associated wrinkles reduced significantly. This data emphasises the need for consideration of time related activities and the consequences thereof, such as the diurnal expansion and contraction affecting the geomembranes are employed and the clay surface is effectively combed and soil particles displaced. It is similarly argued that designers should consider the time temperature curve during operation and post operation life along with the pre-utilisation period so as to give a fair assessment of service life – the use of average temperatures at leachate outlet points is not necessarily a reflection of the containment liner temperature beneath the cell.

Such temperatures do not reflect the effect of leachate mounding nor energy dissipation and radiation for which models do exist (Hao et. al. 2017) The time temperature service life curve for an HDPE geomembrane being hyperbolic will show that a short period at high temperature can significantly reduce performance far more than the equivalent average temperature of exposure over the same period. Similar time of exposure to temperature and p H should be afforded to geotextiles when considering the acceptability of polymer (Mathur A. et al, 1994).

5.1 Project Specifications

Design reports have been submitted claiming safe structures based on a single interface shear test. Still other designs have been submitted in support of license applications with a claim that stability will be addressed only after tender award or during construction. The failure to recognise the importance of interface shear limitations, and the effect of saturated conditions and strain compatibility poses an unfair risk and liability on the facility owner – the facility being either unsafe or having excessive conservatism.

In a particular facility in the coal mining industry, a low risk waste stream was provided with a single geocomposite (LLDPE-S and GCL) liner with substantial overlying granular drainage layer. The authorities rejection of the design based on unproven stability resulted in confirmation of a factor of safety of 1,0 for the PCDs under construction. The challenge faced then was that the facility was under construction in advance of authorisation or licensing. Hence the regulator advised the applicant to profile the base of the intermediate walls in a saw-tooth cross section so as to mobilise the base material shear strength. The consulting engineer embraced the concept and optimised the profile with increasing wave length between saw-teeth as the embankment wall height reduced above the composite liner.

Recognition of interface shear limitations and managing the slip surface above the containment liner in designs incorporating geosynthetics is not adequate to insure stability. The construction of composite (geomembrane plus CCL) liners in which the clay component compaction specification is 98% Standard Proctor MDD at minus 1% to plus 2% OMC can be compromised if construction takes place at excessive moisture contents. The pursuit of particular specifications requires justification. The multiple failure of various HDPE geomembrane products at a particular water storage reservoir, emphasises the need to consider the nature of the material to be contained, especially the presence of oxidising agents,

notably before construction. The same can be said for specifying drainage material and interface shear strength. The specification of an asperity height does not define interface shear for geomembranes. The texturing through micro-spikes or other features is dependent on more than just height, and is influenced by the density, stiffness, and nature of the texturing in relation to the adjacent material and similar. See Table 2 for a comparison between two series of interface shear results for a range of geomembranes having different micro-spike height and density of distribution. The nature of soil selected for the test series was a low permeability clay typically used in compacted clay liners, and an ash as these are typically found in large facilities. The author reiterates the caution in literature that actual interface shear tests should be undertaken to determine strength parameters, and furthermore supports the concept of multi layer shear box tests (Khilnani et. al. 2017) to reflect not only interface but also internal stress strain relationships of materials. It is erroneous to assume a particular height of micro-spike will provide the highest interface shear, or even adequate interface shear strength.

Table 2: Interface shear results for five geomembranes types of different micro-spike height and
distribution with a particular compacted clay and a particular ash, under different normal
stresses. (Acknowledgement H. Venter, NAKO LBE (Pty) Ltd for inducing the test series)

Test Number	Textured Geomembrane Micro-spike height (mm)	Geomembrane MDD 1509kg/m ³ ike height (mm) OMC 26,5%		Ash at interface MDD 1130kg/m ³ OMC 40,7%	
		Φ(°)	C (kPa)	Ф([°])	C (kPa)
1	0,40 û	8,3	12,8	27,8	16,5
2	0,65	9,4	7,5	36,2	40,8
3	≥0,9	8,4	10,5	39,9	3,7
4	≥0,9	7,2	13,1	35,8	7,8
5	≥0,9	8,5	6,8	40,8	0
6	1,1	9,4	18	38	13,7

 $\hat{\mathbf{u}}$: Texturing is a random full surface treatment, not spaced micro-spikes Normal loads at 20, 200 and 400 kPa.

The above results confirm specification of micro-spike height alone does not define maximum interface shear strength benefit. The influence of polymer enriched bentonite GCLs on interface shear strength reduction is reported by Chen et.al (2017), the reason therefore considered as being due to the extrusion of polymer hydrogel under confining load. (The effect of anions on increasing permeability of bentonite-polymer GCLs (Tian 2017) is not addressed in the cases referenced above, nor is diffusion through such BP GCLs as reported by Sample-Lord et.al 2017.))

5.2 Construction Quality Assurance

It is an increasingly common practice to include material specifications in the construction quality assurance (CQA) part of a design report. While these specifications on occasion contradict the specifications on the engineering drawings, there are occasions where particular specifications amend standards and test methods without technical substantiation. The

specification of a particular ash content, standard and/or high pressure Oxidation Induction Time (OIT), does not necessarily add value to the design (Ewais et al 2014), but does tend to increase costs by exclusion of materials that comply with standards (DEA Working Group 9 submission, 2017). Furthermore, no justifiable reason is provided for deviating from the rationale behind the GRI GM13 standard specification for geomembranes (GSI White Paper 32, 2015) in almost all particular specifications of deviation. Furthermore, these limited specifications are indicators and do not inform the design with respect to polymer or resin itself.

The differential scanning calorimeter (DSC) test holds invaluable insight into what the black geomembrane in front of us is made up of. The peak temperature at a transition such as at melt temperature is characteristic of a polymer e.g. PE or PP etc. Thus by observing the DSC plot of energy absorption versus temperature for a particular polymer sample we can identify with some surety from the peak or multiple peaks what the sample is made up of e.g. a blend of PE and PP. The area under the "bell" curve gives the comparative percentage of makeup of the specimen. The position of the peak reflecting the thermal transition temperature may give insight into the makeup of resin blends and crystallinity, as polyethylene is generally grouped into three broad classes of high density, linear low density, and low density polyethylene each with its own attributes. The DSC will however not identify the presence of inclusions such as polycarbonate nor polystyrene.

The interpretation of such DSC results requires careful consideration with respect to the particular application. It is known that some thin (less than 1mm thickness) blended geomembranes have served as satisfactory lagoon liners for decades under exposed South African conditions to hazardous substances including hydrocarbons. Still other geomembrane liners of HDPE have failed under exposed South African conditions when serving as merely potable water containment. Although in these applications the geomembrane is accessible for repair, they are included for an appreciation of the complexity in assessing liner suitability for particular applications. The type of geomembrane and its specific formulation is critical to its longevity (Koerner and Koerner 2017). It is recommended that the owner of a facility makes provision for geosynthetic performance evaluation at the discretion of themselves and/or reviewers (including the statutory review) in particular to enhance assurance in the materials being procured for projects. Such truly independent considerations may include analysis using DSC, gas or liquid chromatography mass spectrometry, infrared scanning or the EU 10/2011 test. It is noted that a resin including calcium carbonate has been offered in the plastics market which would have a significant detrimental effect on service life performance. Thus, the value of thermogravimetry tests as used for determining carbon black but undertaken at even higher temperatures (approximately 900°C) should not be underestimated.

It is generally accepted that the higher the crystallinity (and associated transitional phase temperature) the more chemically resistant the geomembrane (Rowe et. al. 2004, Barrier Systems for Waste Disposal Facilities 2nd Edition page 524).

Significant variation has also been recorded in OIT test results, both prior to and post installation. (Morsy and Rowe 2017) have reflected on service life variability for blended polyolefin geomembranes in respect of standard OIT although service life depends on the entire antioxidant package, polymer resin, and incubation media.

It is thus recommended that the CQA report demonstrating compliance of the as-built facility with the accepted design should include not only the as-built drawings, but also the type of test, number of those tests undertaken; the maximum, minimum, mean values and standard deviation for the test method and an indication of where the tests were undertaken. This record should be for all materials – natural and geosynthetic, and include the aggregate leachate collection and detection systems where relevant.

Descriptions provided by an independent CQA monitor are not adequate, and have been known to not reflect the "offsite" stored data. This aspect has brought the definition of independence into question.

The value of electric leak survey and/or electric leak detection systems can thus not be underestimated.

Figure 5: Differential Scanning Calorimeter (DSC) Test Results for Five "HDPE" Geomembranes used in containment facilities; Temperature peaks at (a) 123,6 °C, (b) 81,0 °C and 122,6 °C, (c) 129,2 °C, (d) 96,0 °C and 111,3 °C, (e) 126,3 °C (upper) and 125,9 °C (inner), confirming the range of polymers and crystallicity. (Acknowledgments to Readiant Acaptacies for undertaking the

range of polymers and crystallinity. (Acknowledgments to Roediger Agencies for undertaking the test series.)

It is with some disillusionment that design report and drawings do not reflect instrumentation to the extent typical of other engineering structures. The absence of site boundary definition, strain gauges, thermistors and flow gauges places the facility owner at risk in many situations. Similarly, the failure to address critical elements of barrier systems such as drainage pipes, drainage cores, sump liners, and filter materials to the same level surety as geomembranes, clays or GCLs introduces weaknesses in design and performance of barrier systems.

6. EQUITY AND SUSTAINABILITY

The regulator has on occasion been challenged on fairness and consistency of decision making. There does however need to be a clear separation of roles and responsibilities between the designer and the regulator. This is emphasised particularly in forensic analysis following geotechnical structure failures such as of a tailings dam (Morgenstern et. al. 2015). The reliance on observational methods and government inspections alone is inadequate to avoid many an incident, because no amount of inspection will reveal the hidden flaws. Hence further actions may be prescribed from time to time. Nevertheless, it is axiomatic that the

regulator cannot regulate its own activities, and if the regulator were to usurp the role of the designer it would usurp its own role. Thus reviews result in an assessment of <u>acceptability</u>, <u>whereas</u> the designer is responsible for the <u>approval</u> <u>of reports and drawings</u>. The following information is thus provided.

6.1 Principles of Review Decisions

The National Environmental Management Act, Act 107 of 1998, (NEMA) defines the principles to be taken into consideration when considering actions which may significantly affect the environment.

These principles are:

- **Consistency:** the principles apply throughout the RSA and to all Organs of State. (2.1)
- **Equitably:** environmental management must put people at the forefront of concern and serve their needs equitably. (2.2)
- **Sustainability:** development must be socially, culturally and environmentally acceptable (2.3)
- **Impact avoidance:** impacts on biodiversity, pollution, landscape, resource depletion, people's rights, and waste generation must be avoided, and where unavoidable be minimised and mitigated recognising a risk averse and cautious approach. (2.4a) best practical environmental option. (2.4b)
- **Environmental Justice:** and adverse impact shall not disadvantage other persons, especially the previously disadvantaged and vulnerable (2.4c)
- **Equitable Access:** all persons shall have fair access to resources, even if special measures are to be taken to facilitate previously disadvantaged persons. (2.4d)
- **Responsibility:** responsibility must be maintained throughout the activity life cycle. (2.4e)
- **Participation:** processes must be inclusive and provide for capacity building where necessary. (2.4 f)
- Inclusive decision making: decisions must recognise person's interests, needs, values and all knowledge of I&APs (2.4g)
- Environmental Education: Community well being and empowerment must be encouraged through knowledge sharing (2.4h)
- **Complete consideration:** decisions must reflect consideration, assessment and integration of disadvantages and advantages (2.4i)
- **Right of refusal:** workers may refuse to do dangerous work, and should be informed of dangers (2.4j)
- **Transparency:** access to information must be in accordance with the law (2.4k)

- **Harmonious policies:** there must be intergovernmental coordination and harmonisation on policies and actions (2.4l)
- **Conflict resolution:** actual or potential conflicts between organs of state should be resolved procedurally (2.4m)
- **Global interests:** global and international responsibilities are to be discharged in the national interest (2.4n)
- **Public trust:** environment beneficial use must serve public interest, and be protected for common heritage (2.4o)
- **Polluter pays:** costs of remediation and of preventing, controlling or minimising further pollution and health impacts... must be paid by those responsible for harm (2.4p)
- **Recognition of women and youth:** the vital role of women and youth must be recognised and promoted (2.4q)
- **Ecosystems require special attention:** specific attention shall be given to stressed, vulnerable, highly dynamic and sensitive ecosystems (2.4r)

The central guiding principles of the National Water Act, Act 36 of 1998, (NWA) are equity and sustainability in the protection, use, development, conservation, management and control of water resources. Chapter 1 of the Act provided interpretation and fundamental principles to be applied, whereas Chapter 4 guides responsible authorities in the exercise of their discretion when granting a licence and conditions attached thereto.

Furthermore, registered persons in terms of the Engineering Professions Act, Act 46 of 2000, are required to abide by a code of conduct defined in Board Notice 41 of 2017 (which requires designers and reviewers to inter alia take public interest and the environment into consideration, and form opinions based on fact).

6.2 A Systems Approach to Review

The revised legislation and waste strategy moved away from dilution of pollution and reliance on attenuation, now relying entirely on containment. The assessment of waste streams remaining after reduction and reuse, leads to five classes of high risk (hazardous); medium risk (general); low risk (dilute); and inert waste. The Class of waste posing highest risk may be assessed as Type 0 requiring pre-treatment before disposal, followed by Types 1 to 4 for decreasing risk waste or pollutant. The high, medium and low risk waste streams now require a commensurate high, medium and low standard of containment barrier system.

The National Water Act, Act 36 of 1998, has further aspects to be taken into consideration for a water use license or general authorisation, one of which being water conservation.

All waste facilities are required to have a barrier system comprising of both a drainage and a composite liner system. The performance of the barrier system required reduces with commensurate reduction in risk to the environment. The facilities for high risk waste are required to have double composite liner separated by a leak detection system whereas the medium and low risk waste containment facilities require a single composite liner.

The performance of barrier systems has been a subject of debate for decades. Early theoretical estimates by Giroud 1989 and 1994 (See Table 3) may overestimate the competence of composite liner systems. The influence of substandard construction quality

assurance and in particular the effect of wrinkles (Rowe 2011) in generating discontinuities and reducing the area of direct contact between geomembrane and clay component will significantly reduce performance. It is postulated that if a particular site supervision and construction team cannot undertake competent "liner" installation, it similarly cannot undertake competent multiple clay layer construction. This is particularly evident where density tests are undertaken on compacted soil layers above geosynthetic layers without either a specification or control of the depth to which the peg is driven when performing the hole for radioactive measuring devices and the lack of attention to specified remediation of the test hole in the clay (let alone the punctured geosynthetics).

Table 3: Theoretical leakage rate per	unit area in litres per	r hectare per day	[,] (lphd) ^(a) through	various types
of liners (Giroud et al, 1994)				

		Hydraulic Head h (m	n)		
Liner Type	Soil Hydraulic Conductivity k (m/s)	0,01	0,03	0,1	0,3
	10 ⁻⁷	90 000	90 000	100 000	150 000
Soil	10 ⁻⁸	9 000	9 000	10 000	15 000
	10 ⁻⁹	900	900	1000	1500
Geomembrane	>10 ⁻²	600	1 000	2 000	3 000
	10 ⁻³	300	500	1 100	2 000
Geomembrane on	10 ⁻⁴	100	250	600	1 400
Semi- Permeable Medium	10 ⁻⁵	40	100	200	600
	10 ⁻⁶	10	20	60	150
Geoclay	10 ⁻¹¹	25	50	150	450
	10 ⁻⁷	1,5	4	12	30
Composite Liner with Compacted	10 ⁻⁸	0,3	0,7	2	6
Soli Layer	10 ⁻⁹	0,05	0,15	0,4	1
Composite Liner with Geoclay	10 ⁻¹¹	0,002	0,008	0,04	0,2

The extent to which total solute transport of pollutants migrate through a barrier system is however influenced by both seepage and diffusion (Foose, 2002), and designers have tended to ignore the effect of diffusive losses through even perfectly intact geomembranes. So too does the temperature of the liner influence transport losses (Rowe, 2005) but of immense significance is the extent to which intimate contact is achieved between the geomembrane and adjacent flow restriction layer (Rowe, 2011), which is largely why composite liners incorporating a GCL are superior to composite liners incorporating a CCL with all other factors remaining the same. This philosophy allows realisation of significant cost savings in the mining industry when considering flownets around points of discontinuity beneath tailings storage facilities (Rowe et al, 2016).

6.3 Competitive Procurement

The intention is to note the development of recent practices which are believed to be anticompetitive and have an element of corruption which has a negative impact on both the environment and business practices. It is in response to these practices that legal guidance is sought with intent to rectify such practices, albeit through criminal prosecution and/or approaches to the relevant ombudsman.

The competent authority for waste management and water use licensing is the Department of Environment Affairs and the Department of Water and Sanitation respectively. Both State departments are bound to cooperation, (the Constitution of the Republic of South Africa section 41 (g) and (h) and the National Environmental Management Waste Act sections 44 and 49) and they employ the National Environmental Management Waste Act, Act 59 of 2008 Regulations of 2013 for assessing waste or pollutant source and the commensurate pollution control barrier standards.

These regulations known as NEMWA Regulations 2013 R636 national norms and standards for waste disposal by landfill prescribe the use of geomembranes and allow the use of other geosynthetic materials as replacements for natural materials provided equivalent performance has been demonstrated. (Please see NEMWA R636 regulation 3(2)(d)). This regulation also requires license applicants to submit signed design reports and drawings (by an ECSA registered person) in support of a license application, and include a Construction Quality Assurance (CQA) plan for implementation during construction.

The alternative materials include possible use of different geomembranes, geotextiles, geosynthetic clay liners, geodrains and geocells. Alternative materials are not necessarily required, nor the cheapest option, if suitable natural materials occur on site. License applications often exclude geotechnical evaluations of available materials which meet prescribed performance specifications in favour of geosynthetic products. License applicants should insist the engineer demonstrate cost effectiveness of the design, or have an external audit to identify such oversight, accidental or intentional, by the designer.

For years the industry has attempted to specify performance; however, where products brands have been specified, professional engineers have included words such as "or equal", "or equivalent", "or similar". The Geosynthetic Interest Group of South Africa published a newsletter article to this effect in November 1999 on its front page (GIGSA newsletter, November 1999 *Fairness Associated with Specifications*).

This approach for fair and competitive behaviour in the engineering industry is carried through in more recent legislation.

The purpose of modern legislation is to promote and maintain competition in the Republic of South Africa, for efficiency adaptability and development of a country, to provide consumers with competitive prices and product choices, and to promote employment and advance the social and economic welfare of South Africans. There is a growing perception, if not reality, of alignment between players in our industry. This may be through the over specification or exclusionary specifications of the consulting engineer targeting a particular product or product supplier. The practice has further developed in which product suppliers have preferential or exclusive supply relationships to installation contractors. The implications are that an applicant's ability to get a fair competitive price for a waste management facility is placed in the hands of the consultant who through specification is actually specifying the contractor and controlling the price rather than the facility performance.

Restrictive horizontal practices and restrictive vertical practices address agreements between firms or associations of firms and are prohibited if competition is lessoned unless it can be shown that competition is improved and/or technical advantage outweighs restriction. Similarly it is prohibited to directly or indirectly fix a trading condition; divide markets; and collude in tendering.

The abuse of dominance by a firm is prohibited, such as to charge an excessive price to the detriment of consumers, to refuse a competitor access to an essential facility when it is economically feasible to do so, to engage in an exclusionary act unless the technical advantage or pro-competitive benefit can be shown to outweigh the anticompetitive effect. (Competition Act, Act 89 of 1998 section 8). Such outlawed acts include requiring or inducing a customer or supplier to not deal with a competitor; refusing to supply scarce goods to a competitor; and/or selling goods or services on condition that the buyer purchases separate goods or services unrelated to the object of a contract. This applies to all business in South Africa, public and private.

It is understood that all State owned entities and government departments are also required to comply with the Public Finance Management Act, Act 1 of 1999, Treasury Regulations, and the Treasury Guidelines in respect of those regulations.

The guidelines state on page 27 clause 3.4.2 -

3.4.2 Specifications should be based on relevant characteristics and/or performance requirements. References to brand names, catalogue numbers, or similar classifications should be avoided. If it is necessary to quote a brand name or catalogue number of a particular manufacturer to clarify an otherwise incomplete specification, the words "or equivalent" should be added after such reference. The specification should permit the acceptance of offers for goods which have similar characteristics and which provide performance at least equivalent to those specified. The quality of goods/services required should, however, not be overspecified to the extent that it will be impossible for others to offer such a product.

Furthermore on page 36 thereof the following table appears:

Use of brand names	Specifications should be based on relevant characteristics and/or performance requirements. References to brand names, catalogue numbers, or similar classifications should be avoided. If it is necessary to
	quote a brand name or catalogue number of a particular manufacturer to clarify an otherwise incomplete specification, the words "or equivalent"
	the acceptance of offers for goods which have similar characteristics and which provide performance at least equivalent to those specified.

Hence it is clear that the over specification to preclude other competitive product suppliers is unacceptable, as is the use of brand names without allowing alternative products of equivalent performance for organs of state.

In tender documents for both public and private entities, some engineers specify materials such as geomembranes and GCLs and geosynthetic drainage layers to the extent that only a single producer can supply such materials. Consideration of local natural materials and local construction and manufacturing is not addressed in design reports.

There is a duty upon all officials in a department, trading entity, or institutional institution to take effective or appropriated steps to prevent any unauthorised expenditure, irregular expenditure and fruitless or wasteful expenditure.

Thus, for all Organs of State, it is appropriate for CFOs to instill a practice of auditing specifications in waste containment facilities, where product specifications deviate from regulatory norms and standards. Similarly, it is good practice for the private sector WMF license holder to have design reports, drawings and tender documents audited or reviewed by a party independent of the design engineer and without vested interests of any sort to review such, specifically for the purpose of cost effectiveness.

7. DISTINCTIVE WASTE-STREAMS AND CONTAINMENT SYSTEMS

7.1 Brine and Acid Lagoons

In the gold and coal mining industry, liquid waste streams with high concentration of salts or strong acids are occasionally produced. Such liquid waste streams are generally considered difficult to contain due to the reaction between the liquid waste and clay or similar material.

It is noted that the brine discharge into the PCD is not the concentrated condition representing the leachable concentration threshold, but rather that the end of evaporation period represents the waste type to be contained for pollution prevention.

The historic MR2 of 1998 lagoon standard, or NEMWA Type 1 waste Class A barrier system design, could be made acceptable provided the performance of alternative barrier system and hydraulic gradient across the alternative to primary composite liner is demonstrated as having equivalent performance to that of a Class A barrier system.

The requirements for waste containment in the norms and standards (R636 regulation 3(1) and 3(2)) require the authority to consider Pr.Eng. signed design reports and drawings with alternative materials provided equivalent performance is demonstrated.

It is known that sodium bentonite GCLs react negatively to cation exchange (Elges, 1986 and Scalia and Benson 2011) and to salts. Furthermore, the hydraulic gradient across thin geocomposite liners (2,0mm thick geomembrane plus 6mm thick GCL) or geomembrane only liners is orders of magnitude higher than across a composite (2,0mm thick geomembrane plus 600mm thick CCL). Thus it is critical to address such gradient by mitigation thereof through ensuring at least direct/intimate contact and normal loading for composite liners, or by alternative means. Although direct contact between geomembrane and GCL or CCL is pursued by particular construction techniques and ballast layers to overcome wrinkling etc., the low interface transmissivity affecting barrier performance is achieved only when loading exceeds about 50kPa.

Thus although it is normal practice to have a double composite liner separated by a leak detection system (LDS) for Type 1 waste, containment alternative designs of same performance can be achieved without the use of a GCL or clay component to the primary composite liner when the nature of waste and loading requires so. This is achieved (typically for acids and concentrated brine liquid waste) by what is commonly referred to as the triple geomembrane liner (see extract from Handbook of Geosynthetic Engineering, 2nd Edition, 2011, Edited by S.K. Shukla) which alternative design was pioneered in South Africa in the 1990s as a cost effective alternative in the mining industry, and later adopted for water treatment works (reverse osmosis plants) associated therewith.

In respect of salts, the "triple geomembrane" type of alternative as used for brine waste was noted in which the Class A barrier <u>primary</u> composite liner (of geomembrane plus CCL or GCL) is replaced by two geomembranes separated by a drainage layer. In this case the upper two geomemranes with separating drainage layer serve as equivalent to unit hydraulic gradient above the LDS and secondary composite liner.

There is often no ballast layer above the primary liner. Such ballast layer would normally protect the geomembrane from UV light and heat which accelerate degradation, as well as protect the liner from wind and/or mechanical damage. It is inconsistent to have a concrete access ramp for vehicles and then allow traffic of vehicles over the unprotected geomembrane liner.

Although the upper two geomembranes separated by a drainage layer are accepted as serving equivalent performance to a Class A primary composite liner, the then LDS is above the secondary composite liner, which in a proposed design is often also just a single geomembrane. Furthermore, the lower liner being on a bed of sand or geotextile renders its composite effect as null and void. This lower geomembrane/geomembrane interface should be drained and preferably under gravity from the lowest point to a monitoring sump at which the performance of the overlying system is measured. (It should be noted that a drainage layer is given effect by the presence of a low permeability layer beneath it).

The question of thermal conductivity across barrier systems has been studied by various persons over the past decade or so. Early work in the DWS laboratory in Pretoria West showed thermal gradients across double geocomposite liners to be about 2°C irrespective of the temperature, but note this primary liner had a moist GCL in contact with the overlying geomembrane. This research development was published at LIG 2005 and Sardinia 2007, but detracts from the particular brine lagoons or Pollution Control Dams (PCDs) design of a primary geomembrane liner only and secondary liner, or double geocomposite barrier, both with a protection layer for traffic during salt recovery in the evaporation dams.

When two liners are separated by an air void induced by a spacer of geonet, or cuspated drain, or geotextile, or similar material, the air void acts as a thermal barrier. (See Singh et al for thermal conductivity of HDPE geomembranes, wet and dry GCLs, and wet and dry geotextiles.) As the primary geomembrane heats up due to say solar radiation in exposed conditions, so the

enclosed air void reaches the same temperature and heats the drainage layer and secondary liner. The extent to which the drainage layer and in particular the usually thinner secondary geomembrane liner cools is largely dependent on the moisture content and conductivity of what lies beneath it – if it is a moist/wet GCL or soil then the heat in the secondary liner can be conducted away from the liner as quick as it passes through that geomembrane. The same can be said for designs with geotextiles beneath the secondary liner; however, the elevated temperature tends to drive off moisture from GCLs (see literature on GCL panel shrinkage and wetting and drying of GCLs) and obviously the same drying applies to geotextiles as well. Thus if the air void remains trapped (such as in double glazed windows of northern Europe), then the temperature of the upper liner and barrier system rises even higher than the norm due to the lower thermal conductivity of underlying layers inhibiting heat escape. (See paper on wrinkles by Take et al. 2014, at ICG10, Berlin and ASCE Geofronteirs 2017 recommended reading). The temperature difference of geomembranes at wrinkles is typically 10^oC higher than adjacent area to the wrinkle where the membrane is in direct contact with soil or hydrated GCL.

In the case of double geomembrane only liners the primary liner could be cooled by overlying liquid, but more importantly is to avoid the air temperature in the spacer voids from rising excessively – and thus by moving the air or ventilation, the separating structure does not increase in temperature to the same extent. Even a 10° C drop in liner temperature will substantially increase the service life (See Rankine Lecture of 2005 or Casagrande Lecture of 2011). Alternatively, the liner could be covered with say a soil cement layer, or high performance geomembrane specifically developed for such conditions could be used to partly mitigate this exposure impact. The nature and extent of cover layers in lieu of ballast bags would be influence by amongst others the shape of the floor area and nature of the sediment or precipitate to be removed.

Figure 6: Brine Evaporation Dam Barrier System Type Drawing (Handbook of Geosynthetic Engineering, 2nd Edition, page 289)

7.2 Wastes containing VOCs

The performance of composite liners with respect to total solute transport is widely published (Foose, 2002). Similarly it is widely known that the rate of diffusion of volatile organic compounds even through perfectly intact liner systems is influenced by temperature (Rowe 2004) and the partitioning coefficient of the compounds being considered.

To mitigate this diffusive characteristic, designers may consider alternative materials, alternative systems, or combinations thereof to either contain the VOC stream to a greater extent, or to remove the diffused VOCs from further diffusion potential and treatment (Legge et

al., 2007). Interested persons are referred to methods of treatment of VOCs such as at Casey Station in Antarctica (Rowe, 2014) and at a petrochemical facility containing sludge (Meyer et. al., 2015).

7.3 Sludge Lagoons

Sludge lagoons can be necessary for any type of waste be it assessed as a Type 1, 2, 3, or 4. Geosynthetic materials are prescribed and even in Type 4 waste facilities maybe elected for use. In the latter case this could be for water conservation and as is desirable by facility owners as contributing to accelerated drainage and associated reduction in capital costs. In all cases it is critical to understand not only the waste assessment from a chemical perspective, but also its geotechnical parameters, and behaviour upon oxygenation or exposure to air, and when subject to additional normal load which may induce liquefaction of the lower lying material.

The use of drainage layers under low transmissive hydraulic gradients may fail if the particular waste stream results in a precipitate upon drying out. In such cases the drainage layer cannot be kept at atmospheric pressure but needs to be maintained submerged, and the result thereof is that the containment liner design needs to recognise the higher hydraulic gradient. Irrespective of whether a precipitate may form or not, the filter compatibility between waste stream and filter material needs to be taken into consideration for such ultra fine non cohesive materials, and augmented by physical testing (Sherrard et. al, 1989). By employing negative pressures to the pore water pressure within a sludge, the rate of drainage can be accelerated by an order of magnitude, as has been seen in the development of mine backfill bag technology Kaytech internal investigation, by L. Gilbert, November 2002.

In the design of such lagoons, the question of means of drainage becomes debateable – should gravity systems be applied or suction systems. In the event of blanket filter drains having been omitted historically, consideration may be given to the use of prefabricated vertical drains for particular applications (see GRI Report 46 of 2017); however, caution should be exercised with respect to limiting vertical stress and depth of installation so as to avoid rupture or damage to baseliners. The designer should also take into consideration the effect of a loss in integrity of the liner system on the supporting embankment, as that structure is essentially acting as a dry dam or levee. Designers are referred to the ICOLD Bulletin 164 on suffusion, and current work of the USSD on such embankments which are susceptible to drying and desiccation cracking, in which case competent filter protection may be critical to safety of the embankment.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusion 1:

The change in philosophy and amendment to regulation pertaining to water resources protection has been necessary in recognition of this scarce renewable resource and the consequences of past activities. The claim that the geomembrane element of containment barrier systems required for water resource protection is unaffordable does not take into consideration the cost of augmenting present or developing additional water supply, nor the socio-economic costs associated with abandonment of current pollution control standards.

Competent barrier systems incorporating drainage and composite liners have containment performance many orders of magnitude better than the past practice of relying on attenuation or merely monitoring for the presence of leachate in water deficit areas. For medium and large MSW sites there is a cost equivalence between past and present prescriptive barriers, however the pollution prevention performance is improved as much as a million times.

Conclusion 2:

The criticism of the authority's lack of technical capacity to meet demand is eliminated by a now regulated procedure incorporating time constraints, and is no longer justified. The onus is now on the applicant to demonstrate compliance at the time of application, or similarly within a limited period from notification of outstanding information.

Conclusion 3:

The means of contaminant containment by barriers follows a systems approach. The mechanism of pollution control barrier performance and interaction with the specific waste or pollutant body needs to be comprehensively understood in order to achieve a competent compliant facility through the design, construction, and operation phases. This includes the need to understand not only the waste or pollutant risk and resultant assessment as a particular type, but also requires understanding of the waste stoichiometry and physical attributes, as well as how they change with time with resultant effect on contaminant containment drains and liners over the service life of the facility.

A sound design alone does not provide assurance of pollution prevention due to potential detrimental influences during construction or operation. In the same manner that a design is to be certified by a competent person, so to should the construction be undertaken by a competent person and similarly operated by a competent person. While this may be addressed in part in construction quality assurance programmes by specifying standards or certification, the risk of substandard performance increases with phased construction and changes in personnel, roles and responsibilities.

Conclusion 4:

The norms and standards prescribe a layout with implied performance along with a suit of technical considerations which allow for alternative layouts and materials provided the alternative system maintains equivalent performance. The use of alternative materials, be they geosynthetic or other materials, or use of the waste itself in part, as fulfilment of functions requires a definitive assessment rather than a descriptive assessment. The design and its evaluation is based on specified performance criteria and materials evaluated to confirm their suitability. The failure to base design on established parameters can lead to significant cost increases and even failures during construction and/or operation. The specification of a sound geosynthetic product within a design does not imply a sound design nor acceptable performance of the barrier system. It is recommended that the design process establishes the sensitivity of the design to different values for parameters used in quantification of performance.

Conclusion 5:

Many waste management Facility Owners are uninformed about technologies and thus put their trust exclusively into a single contracted Professional Service Provider, which has on occasion resulted in substandard and unsafe facilities or excessive infrastructure costs. There is thus significant value to be gained in the appointment of an independent reviewer who reports directly to the owner with the express purpose of exploring the design and construction process for both compliance with regulatory norms and standards and simultaneous cost efficiencies.

Professional Service Providers do not always put the Clients Profitability first. This can be due to various factors including maximising unnecessary study components, erroneous waste assessment; the implied development of unnecessary infrastructure including excessive barrier systems; and/or specification of specific brand products in lieu of performance based specifications or allowing of alternatives of equivalent <u>performance.</u>

Conclusion 6:

Tender documentation should include Declarations of Interest and exclude bids with anticompetitive or corrupt activities.

Conclusion 7:

The failure to include instrumentation in the design and construction of waste facilities to monitor performance during the operational life can result in losses to owners through regulatory actions and community complaints that lead to post facto expensive investigations, temporary or permanent closures of facilities and loss of valuable airspace.

Conclusion 8:

If there is not a clear distance between designers and regulators the value of the regulatory role is diminished or even corrupted. Owners and applicants should accompany their professional service providers at presentations as a measure of control over both the regulator and the applicant's professional service providers.

9. ACKNOWLEDGEMENTS

The author wishes to thank the Director General of the Department of Water and Sanitation for permission to publish this paper and for the privilege of serving the public through employment in the Department.

The immense contributions made by industry leaders and participants is gratefully acknowledged. A special thanks to geoenvironmental pioneers for the personal encouragement and technical support provided over decades (in chronological order) is extended to Dr J.P. Giroud; Dr R.M. Koerner and Dr R.K. Rowe.

The regular encouragement and constructive criticism from industry is similarly appreciated, with special thanks to the review panel members of the past 5 years.

10. REFERENCES AND RECOMMENDED READING

Abdelaal F.B., Rowe, R.K., (2015): *Durability of Three HDPE Geomembranes Immersed in Different Fluids at 85°C*, Journal of Geotechnical and Geoenvironmental Engineering, Volume 141, Issue 2, February 2015.

Ali, M.A. Bouazza A. (2016): *Thermal Conductivity of Geosynthetic Clay Liners*, Canadian Geotechnical Journal, June.

Ashe, L.E. Rowe R.K. Brachman R.W.I. (2015): *Laboratory Study of Downslope Erosion for 10 Different GCLs*, Journal of Geotechnical and Geoenvironmental Engineering, March, 2015, USA

Benson, C.H., Jo. H.Y. and Musso T. (2015): *Hydraulic Conductivity of Organoclay and Organoclay-Sand Mixtures to Fuels and Organic Liquids*, Journal of Geotechnical Engineering, March 2015, USA

Benson, C.H., (2016): *Exothermic Reactions in Elevated Temperature Landfills: Field Observations & Laboratory Experiments*, USA

Benson, C.H. (2017): *Characteristics of Gas and Leachate at an Elevated Temperature Landfill*, Proceedings GeoFrontiers, Florida, USA pp 313-322

Bouazza, M.A., (2016): *New Insight on Geosynthetic Clay Liner Hydration: the Key Role of Subsoil Mineralogy*, Geosynthetics International, September.

Brink, D., Shamrock, J., Nortje, R., Johns, J., Msiza, J., (2009): Some Pitfalls in the Design of *Lining and Capping Systems for Landfills*, Landfill Interest Group Conference, Western Cape, South Africa

Charpentier, C. (2016): Case Study on Electrical Leak Location using both Water Puddle and Dipole Methods on a Mining Waste Cap Totalling 255 000m², GeoAmericas, Miami, USA

Chen J. Benson C.H. Likos W.J. Edil T.B. (2017): *Interface Shear Strength of a Bentonite-Polymer Geosynthetic Clay Liner and a Textured Geomembrane*, Proceedings GeoFrontiers, Florida, USA pp 219-226

Copeland, A., (2014): *Do all TSF's Leak and need to be Lined?*, Discussion Paper, 5th International Mining and Industrial Waste management Conference, Orion Safari Lodge, Rustenburg, RSA, 10th -12th March 2014

Croft, F., (2015): *Has there been any change in Professional Conduct?* Civil Engineering, March Edition

Dashko R., Shidlovskaya, A., (2016): *Impact of Microbial Activity on Soil Properties*, Canadian Geotechnical Journal, May, Canada

Davies, P., Legge, K.R. (2003): Geosynthetic Clay Liners: Use and Abuse in South Africa, Sardinia 2003

Dickson, S., Brachman R. W. I., Rowe, R.K., (2010): *Thickness and Hydraulic Performance of Geosythetic Clay Liners Overlying a Geonet*, Journal of Geotechnical and Geoenvironmental Engineering, April, 2010, USA

Dolez, P. Beaumier D. Taghizadeh A. Blond E. (2017): *Effect of White and Black Colors on Heat Generation in Polyethylene Geomembranes Exposed to Solar Radiation*, Proceedings GeoFrontiers Florida, USA pp 259-266

Dolez, P. and Blond E. (2017): *Evaluation of Geotextile Performance for the Filtration of Fine-Grained Tailings*, Proceedings GeoFrontiers, Florida, USA. pp 269-277

Doll, P., (1997): *Desiccation of Mineral Liners Below Landfills with Heat Generation*, Journal of Geotechnical and Geoenvironmental Engineering, November, 1997, USA

Edil T. (2007): *Is Aqueous-Phase VOC Transport from Modern Landfills a Potential Environmental Problem*, Proceedings Sardinia 2007, 11th International Waste Management and Landfill Symposium, 1-5 October 2007

Ewais A.M.R., Rowe R.K., and Scheirs J. (2014): *Degradation of 2.4mm HDPE Geomembrane with high Residual HP-OIT*, 10th International Conference on Geosynthetics, Berlin, Germany

Ewais, A.M.R., Rowe R.K., Brachman, R.W.I., and Arnepalli, D.N. (2016): Service Life of a High-Density Polyethylene Geomembrane under Simulated Landfill Conditions at 85°C, Journal of Geotechnical and Geoenvironmental Engineering, Volume 140, Issue 11, November 2014

Foose, G.J., Benson, C.H., and Edil, T.B. (2001): *Analytical Equations for Predicting Concentration and Mass Flux from Composite Liners*, Geosynthetics International, 8(6), pp. 551-575

Fourmont S.B. and Koerner G.R. (2017): *Determining the Long-Term Transmissivity of Selected Drainage Geocomposites to Landfill Leachate*, GeoFrontiers Proceedings, Florida, USA pp 274-280

Fox, P.J., and Stark, T.D., (2015): *State of the Art Report: GCL Shear Strength and it's Measurement – Ten-Year Update*, Geosynthetics International, Volume22, Issue 1, 2015, pp. 3-47

Froneman, Moseneke and Madlanga (2015): Shoprite Checkers (Pty) Limited v Member of the Executive Council for Economic Development, Environmental Affairs And Tourism, Eastern Cape and Others (CCT 216/14) [2015] ZACC 23; 2015 (6) SA 125 (CC); 2015 (9) BCLR 1052 (CC) (30 June 2015)

Gilson-Beck, A., (2016): *Best Practices for Groundwater Protection*, GeoAmericas Proceedings 2016, Miami, Florida, USA

Giroud, J.P., Badu-Tweneboah, K., and Soderman, K.L. (1994): *Evaluation of Landfill Liners*, 5th International Conference on Geotextiles, Geomembranes and Related Products, Volume 3, Singapore, pp. 981-986

Giroud, J.P., Houlihan M.F. Bachus R.C. and Qureshi S. (1998): *Clogging Potential of Geosynthetic Leachate Collection Layers by Fine Particles from Sand Protective Layers*, 6th International Conference on Geosynthetics, Volume 1, Altlanta, Georgia, USA, March 1998, pp. 185-190

Government Gazette No.704 of 1999 - National Water Act, Act 36 of 1998, Regulations on Use of water for Mining and Related Activities aimed at the Protection of Water Resources

Gundle, C.J., Meyer P.J., Meyer W., and Schaffner M. (2013): *Technology Response for Mitigating Environmental Impacts to Achieve Long-Term Pollution Prevention*, GeoAfrica 2013 Conference, Ghana

Haager M. (2014): *High Temperature Resistant Geomembrane for Hot Brine*, 10th International Conference on Geosynthetics, 2014, Berlin, Germany

Hao Z., Sun M., Ducoste J., and Barlaz M. (2017): A Model to Describe Heat Generation and Accumulation at Municipal Solid Waste Landfills, Proceedings Geofrontiers, Florida, USA pp 281-288

Honningford L. (2016): *Ensuring competent Geomembrane Installations*, SAICE Civil Engineering Magazine, Volume 24 June 2016, South Africa

Hoor A. (2012): Effect of Temperature on the Service Life of Landfill Liners and Potential Temperature Control Strategies, GeoAmericas 2012 Conference, Lima, Peru

Hornsey, W.P., (2013): *Performance of Cushion Geotextiles for Liner Protection Applications*, Presentation at GeoAfrica 2013 Conference, Ghana

Hsuan, Y., and Koerner, R.M., (2015): *Rationale and Background for the GRI-GM13 Specification for HDPE Geomembranes*, GSI White Paper #32

International Commission on Large Dams Bulletin 55, (1986): *Geotextiles as filters and transitions in fill dams*, CIGB Publications.

International Commission on Large Dams Bulletin 95, (1994): *Embankment Dams Granular Filters and Drains: Review and Recommendations*, CIGB Publications.

International Commission on Large Dams Bulletin 97, (1994): *Tailings Dams Design of Drainage: Review and Recommendations*, CIGB Publications.

International Commission on Large Dams Bulletin 99, (1995): *Dam Failures Statistical Analysis*, CIGB Publications.

International Commission on Large Dams Bulletin 143, (2013): *Historical Review on Ancient Dams*, CIGB Publications.

International Commission on Large Dams Bulletin 164, (2017): *Internal Erosion of Existing Dams, Levees and Dikes and their Foundations*, CIGB Publications.

Jafari, N.H., Stark T.D., and Rowe, R.K. (2014): Service Life of HDPE Geomembranes Subjected to Elevated Temperatures, Journal of Hazardous, Toxic, and Radioactive Waste, 18(1), pp. 16-26

Jones, D.D., and Rowe, R.K., (2016): *BTEX Migration through Various Geomembranes and Vapor Barriers*, Journal of Geotechnical and Geoenvironmental Engineering, Volume 142, Issue 10, October 2016

Kaur, A., and Fanourakis, G.C., (2016): *The Effect of Type, Concentration and Volume of Dispersing Agent on the Magnitude of the Clay Content Determined by the Hydrometer Analysis*, Journal of the South African Institute of Civil Engineering, Volume 58 Number 4, December 2016

Khilnani K., Stark T.D. and Bahadori T.M. (2017): *Comparison of Single and Multi-Layer Interface Strengths for Geosynthetic/Geosynthetic and Soil/Geosynthetic Interfaces*, Proceedings GeoFrontiers, Florida, USA, pp 42-51

Klein R., Baumann T., Kahapka E. and Niessner R. (2001): *Temperature Development in a Modern Municipal Solid Waste Incineration (MSWI) Bottom Ash Landfill with Regard to Sustainable Waste Management*, J Hazard Mater 83(3), pp. 265-280

Koerner, G.R., and Najero, D. (2005): *Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces*, GRI Report No.30, 14th June 2005

Koerner, G.R. and Koerner R.M. (2017): *The Durability of Exposed Geomembrane Covers*, Proceedings GeoFrontiers, Florida, USA, pp 139 – 145

Koerner, R.M., and Koerner J.M. (2007): *GRI's Second Worldwide Survey of Solid Waste Landfill Liner and Cover Systems*, GRI Report No.34

Koerner R. M., Koerner, G., (2008): Inadequate Performance of Geotextile Filters under Difficult and Challenging Field Conditions, GRI Report No. 36

Koerner, R.M. and Wong, W., (2011): *Analysis and Critique of Twenty Large Solid Waste Landfill Failures*, GRI Report No. 41, 17th October 2011

Koerner, R.M., Hsuan, Y., and Koerner, G.R., (2014): *Exposed Lifetime of 19 Different Geosynthetics in the Laboratory and in Phoenix, Arizona*, GRI Report No. 44, 16th December 2014

Legge, K.R., Legg, P.A., and Meyer P.J. (2007): *Coupled Solution to Heat Induced Degradation of Containment Barriers*, Proceedings Sardinia 2007, 11th International Waste Management and Landfill Symposium, 1-5 October 2007

Legge, K.R. (2012): Composite Filters of Geotextile and Natural Materials for Critical Applications, GeoAmericas 2012 Conference, Lima, Peru

Legge, K.R., Fricker C., Mnisi K., Nemusibi K., and Seake B., (2014): *Service Life Considerations of Pollution Control Barrier Systems*, SAICE Civil Engineering Magazine, Volume 22, No. 7, August 2014

Legge, K.R. Fricker C. and Mnisi K. (2015): *Pollution Prevention Awareness for Municipal Managers in South Africa*, SAICE Civil Engineering, Magazine, Volume 23, No. 9, October 2015

Lu, N., and Dong, Y., (2015): *Closed-Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature*, Journal of Geotechnical and Geoenvironmental Engineering, Volume 141, Issue 6, June 2015

Mather, A, Netravali, A.N., and O' Rourke, T.D., (1994) *Chemical Aging Effects on the Physio-Mechanical Properties of Polyester and Polypropylene Geotextiles*, Geotextiles and Geomembranes 13 (1994) 591-626

Meyer, W and Meyer, P., (2016): *Construction of the First Enhanced Barrier System in the World*, Civil Engineering, Volume 24, No. 3, April 2016

Morgenstern, N.R., Vick, S.G., and Van Zyl, D., (2015): *Report on Mount Polley Tailings Storage Facility Breach*, Independent Expert Engineering Investigation and Review Panel, British Columbia, 30th January 2015, unpublished

Morsy M.S. and Rowe R.K. (2017): *Performance of Blended Polyolefin Geomembrane in Various Incubation Media Based on Std-OIT*, Proceedings GeoFrontiers, Florida, USA, pp. 1-10

National Environmental Management Act, Act 107 of 1998, South Africa

National Environmental Management Waste Act, Act 59 of 2008, South Africa

National Water Act, Act 36 of 1998, South Africa

Palm, J.G., and Visser J. L., (2015): *Landfill Licensing and Liners*, Western Cape LIG Seminar, Tulbagh, 15th-16th September 2015

Peggs, I.D., (1985): *Why Quality Control? A Graphic Case History*, Geotechnical Fabrics Conference '85, Cincinnati, OH.

Qian, X., Gray, D., and Koerner, R.M., (2004): *Estimation of Maximum Liquid Head over Landfill Barriers*, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(5), pp.488-497

Ramsey, B., and Wu, Y., (2013): Advances in Geomembranes: Thermal Properties and Elevated Usage Temperatures, GeoAfrica 2013 Conference, Ghana

Reinhart D.R., Mackay R., Levin S., Joslyn R., and Motlagh A. (2017): *Field Investigation of an Elevated Temperature Florida Landfill*, Proceedings GeoFrontiers, Florida, USA, pp. 298-301

Revision of General Authorisations in terms of Section 39 of the National Water Act (Notice 399 of 2004), Act 36 of 1998

Rowe, R.K., Quigley R.M., Brachman R.W.I. and Booker, J.R., (2004a): *Barrier Systems for Waste Disposal Facilities 2nd Edition*, Taylor & Francis Books Ltd, London, ISBN 9780419226307

Rowe, R.K., and Van Gulck J.F. (2004b): *Filtering and Drainage of Contaminated Water*, Geofilters 4th International Conference, Stellenbosch, RSA, pp. 1 – 63.

Rowe, R.K. (2005): *Long Term Performance of Containment Barrier Systems*, Geotechnique 55, No. 9, pp.631-678

Rowe, R.K. (2011a): *Short and Long-term Leakage through Composite Liners*, The 7th Arthur Casagrande Lecture, Canadian Geotechnical Journal 49(2), 2012 pp. 141-169

Rowe, R.K. (2011b): Geosynthetics in Bottom Liners and Covers for Use in Lagoons, Secondary Containment, Landfill and Mining Applications, GIGSA Seminar, Stone Cradle, Gauteng, South Africa, 6th-7th September 2011

Rowe R.K., Ewais, A.M.R., (2014): *Degradation Behaviour of HDPE Geomembrane with High and Low Initial High-Pressure Oxidative Induction Time*, Geotextile and Geomembranes Volume. 42, Issue 2, April 2014, pp. 111-126

Rowe, R.K., Abdelaal, F. B., (2016a): Antioxidant Depletion in High-Density Polyethylene (HDPE) Geomembrane with Hindered Amine Light Stabilizers (HALS) in low pH Heap Leach Environment, Canadian Geotechnical Journal 53(10), June 2016, pp. 1612-1627

Rowe, R. K., (2016b): *Recent Insights Regarding the Design and Construction of Modern MSW Landfills*, EurAsia Waste Management Symposium, 2016

Rowe, R.K. Joshi P. Brachmann R.W.I. and McCleod H (2017): *Leakage through Holes in Geomembranes below Saturated Tailings*, Journal of Geotechnical and Geoenvironmental Engineering, Volume 143, Issue 2, 2017.

Raviteja, K.V.N.S. and Munwar Basha B., (2015): *Variability Associated with Interface Friction between Geomembrane and Soil*, 50th Indian Geotechnical Conference, Pune, Maharashtra, India

Sample-Lord K.M., Bohnhoff G.L., and Tong S. (2017): *Diffusion of Calcium Chloride through Polymerized Bentonite*, Proceedings GeoFrontiers, Florida, USA, pp. 200-208

Shackelford, C.D., (2014): The ISSMGE Kerry Rowe Lecture: The Role of Diffusion in Environmental Geotechnics, Canadian Geotechnical Journal, 51(11), pp.1219-1242

Shamrock, J. and Msiza, J., (2015): *HDPE Geomembrane Specification and Performance Implications*, Western Cape LIG Seminar, Tulbagh, 15th-16th September 2015

Shukla, S.K., (2011): *Handbook of Geosynthetic Engineering*, Second Edition, Institute of Civil Engineering Publishing, London, United Kingdom, ISBN: 9780727741752

Singh, R.M., and Bouazza, A. (2013): *Thermal Conductivity of Geosynthetics*, Geotextiles and Geomembranes 39, 2013, pp. 1-8,

Southen J.M., and Rowe R.K., (2005): *Thermally Induced Desiccation of Geosynthetic Clay Liners in Landfill Basal Liner Applications*, GSP 142 Waste Containment and Remediation

Stark T.D. and Jafari N.H. (2017): *Landfill Operational Techniques in the Presence of Elevated Temperatures*, Proceedings GeoFrontiers, Florida, USA, pp. 289-297

Stott, P., and Theron E., (2016): *Shortcomings in the estimation of clay fraction by hydrometer*, Journal of the South African Institute of Civil Engineering, Volume 58, Number 2, June 2016, pp. 14-24,

Take, W.A, Brachman, R.W.I, and Rowe, R.K., (2015): *Observations of Bentonite Erosion from Solar-Driven Moisture Migration in GCLs covered only by a Black Geomembrane*, Geosynthetics International, Volume 22, Issue 1, February 2015, pp. 78-92

Thielmann, S.S. Fox P.J. and Athanassopoulos C. (2016): *Shear Strength of GMX/GCL Composite Liner under High Normal Stress*, Journal of Geotechnical and Geoenvironmental Engineering, Volume 142, Issue 5, May 2016

Tian K. Benson C.H. Likos W.J. (2017): *Effect of Anion Ratio on the Hydraulic Conductivity of a Bentonite-Polymer Geosynthetic Clay Liner*, Proceedings GeoFrontiers, Florida, USA pp. 180-189

Vidal, D., Queiroz P.I. and Santos C.T. (2014): *Unsaturated Flow Behaviour of Leak-Detection Systems with Geonets*, 10th International Conference on Geosynthetics, 2014, Berlin, Germany

Weng, J. (2017): *Feasibility of Vacuum Consolidated with Stereo Drain System in Surface Prereinforcement of Dredged Spoil*, Korean Society of Civil Engineers, Journal of Civil Engineering, Published online August 31, 2017, pp. 1-6

William, J.L. (2014): *Modelling Thermal Conductivity Dryout Curves from Soil-Water Characteristic Curves*, Journal of Geotechnical and Geoenvironmental Engineering, Volume 140, Issue 5, May 2014, USA

Yoshida, H., and Rowe, R.K. (2003): *Consideration of Landfill Liner Temperature*, Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium.